文/李芳芳
圆锥曲线中的定点问题是高考命题的一个热点,也是圆锥曲线问题中的一个难点。解决这个难点没有常规的方法,但解决这个难点的基本思路是明确的,定点问题必然是在变化中所表现出来的不变的量,那么就可以用变量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变量所影响的某个点,就是要求的定点。化解这类问题难点的关键就是引进变化的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
题型一、直线过定点问题
评注:定点定值问题的关键是引进参数建立其求解目标的代数表达式,只要这个代数表达式与引进的参数无关即可。本题的难点是由的表达式,如何确定m值使得与直线斜率无关,化解的方法就是对k进行集项,只有当k的系数等于零时,式子的值才能与k无关,进而求出定点。当然也可以先通过特殊位置确定数量积的值和点M的坐标,再进行具体证明。
(作者单位:浙江省龙泉第一中学)