论文网
首页 医学护理中西医结合正文

神经调节辅助通气对慢性阻塞性肺疾病患者炎性反应及脱机的影响

  • 投稿闲愁
  • 更新时间2016-01-02
  • 阅读量674次
  • 评分4
  • 72
  • 0
  【摘要】目的观察神经调节辅助通气(NAVA)对改善慢性阻塞性肺疾病急性加重期(AECOPD)患者炎症及氧化应激状态的相关性,探讨NAVA模式相对于压力支持通气(PSV)模式在提高脱机成功率方面的影响。方法 前瞻性观察研究,收集天津市第一中心医院重症监护病房(ICU)2012年11月至2014年1月期间收治的40例进行机械通气治疗的AECOPDⅢ级患者,排除严重呼吸抑制或需要深度镇静、高位截瘫、神经肌肉病变等的患者,并根据“性别、年龄、APACHEⅡ评分、病史、PaCO2”五个因素水平按“不平衡指数最小的分配原则”随机分为PSV组和NAVA组,每组20例,比较两组脱机成功率、48 h再插管率及ICU住院天数,分别于开始通气第1天、第3天、第5天以及第7天时通过纤维支气管肺泡灌洗技术获取其支气管肺泡灌洗液(BALF)并抽取静脉血,采用酶联免疫吸附试验(ELISA)方法检测血清中C-反应蛋白(CRP)、血清淀粉样蛋白A(SAA)、人软骨糖蛋白-39(YKL-40),并与纳入的25例健康体检者作为对照组比较;再比较两组相应时点BALF中YKL-40水平。计数资料采用χ2检验,计量资料采用成组t检验或重复测量方差分析,以P<0.05为差异具有统计学意义。结果(1)NAVA组和PSV组中白细胞数、中性粒细胞比例变化均差异无统计学意义(P>0.05),NAVA组血CRP和SAA质量浓度下降的幅度明显高于PSV组(P<0.01),但两组间血YKL-40的质量浓度差异无统计学意义(P>0.05);NAVA组BALF中YKL-40的质量浓度下降幅度明显高于PSV组(P<0.01);(2)NAVA组与PSV组最终脱机成功率差异无统计学意义,但NAVA组直接脱机成功率高于PSV组(P=0.046),48 h内再插管率低于PSV组(P=0.032)。NAVA组患者ICU住院天数低于PSV组(P=0.031),直接脱机失败患者首次试脱机前EAdi峰值显著高于其他患者(P=0.002)。结论 NAVA能缓解AECOPD患者的炎症及氧化应激反应,最终提高患者的直接脱机成功率,减少ICU住院时间,但具体能否提高最终脱机成功率还需深入研究。 
  【关键词】神经调节辅助通气;慢性阻塞性肺疾病急性加重期;压力支持通气;生物标记物 
  Effects of neurally adjusted ventilatory assist on inflammatory reaction and weaning in patients with AECOPD 
  Jin Qiu, Wang Hongfei,Wang Yongqiang, Wang Bing. Tianjin the First Center Hospitial,Tianjin 300192,China 
  Corresponding author:Wang Bing,Email:egenbing@163.com;Wang Yongqiang,Email:yongqiangwang1962@sina.com 
  【Abstract】ObjectiveTo observe the correlation between neutrally adjusted ventilatory assist (NAVA) mode and improvement of inflammation and oxidative stress in patients with acute exacerbation of chronic ob structive pulmonary disease(AECOPD), and as well as to investigate the effects of NAVA mode versus pressure support ventilation (PSV) mode on improving the success rate of weaning advantages.MethodsA total of 40 patients with AECOPD-Ⅲ supported by mechanical ventilation treatment admitted from November 2012 to January 2014 into intensive care unit (ICU) were enrolled for prospective study. The patients were randomly divided into PSV mode (n=20) and NAVA mode (n=20) according to “gender, age, APACHEⅡscore, medical history, PaCO2” of five factors and adopting “the principle of minimum distribution of the imbalance index”. The comparisons of the successful rate of weaning, 48 h re-intubation rate and length of ICU stay were made between two groups. The level of C-reactive protein (CRP), serum amyloid A (SAA), human cartilage glycoprotein 39 (YKL-40) in serum were measured by enzyme-linked immunosorbent assay (ELSIA) on the 1st day, 3rd day, 5th day and 7th day after initiation of mechanical ventilation, and results of these laboratory tests in patients were compared with those in healthy subjects of control group. And simultaneously, the broncho-alveolar lavage fluid (BALF) was collected with Gibot method by employment of optic fiber bronchoscope on the given days for detection of YKL-40, and levels of YKL-40 were compared between NAVA mode and PSV mode. Enumeration data were analyzed with χ2 test, measurement data were analyzed with t test or repeated measures analysis of variance, and P<0.05 was considered to be significant. Results(1)There were no significant differences in leukocyte count and neutrophils percentage between NAVA mode and PSV mode (P>0.05). The magnitudes of decrease in concentrations of blood CRP and SAA in NAVA mode were significantly greater than those in PSV mode (P<0.01), but there was no significant difference in blood YKL-40 between NAVA mode and PSV mode (P>0.05). The magnitude of reduction in concentration of BALF YKL-40 in NAVA mode was significantly greater than that in PSV mode (P<0.01). (2)There was on significant difference in rate of final weaning between NAVA mode and PSV mode, but the rate of direct weaning was higher in NAVA mode than that in PSV mode (P=0.046), and the 48 h re-intubation rate was lower in NAVA mode than that in PSV mode (P=0.032). The length of ICU stay was shorter in NAVA mode than that in PSV mode (P=0.031). The peak of EAdi (electric activated diaphragma trigger) in 8 patients failing in direct weaning before first attempt was significantly higher than that in other patients with successful weaning patients (P=0.002).ConclusionsNAVA mode can attenuate inflammation and oxidative stress in patients with AECOPD, and ultimately improve the rate of direct weaning and shorten the length of ICU stay. Further research is necessary to confirm the capability of NAVA mode for improving the ultimate rate of weaning in AECOPD patients. 慢性阻塞性肺疾病急性加重期(AECOPD)病情危重,可导致肺功能损害、气道炎症加重,严重影响患者的生活质量并导致病死率上升,机械通气是AECOPD最重要的治疗手段之一。但传统通气模式约1/4患者会发生撤机困难甚至呼吸机依赖。神经调节辅助通气(neurally adjusted ventilatory assist,NAVA)是一种全新的机械通气方式。NAVA无需设置压力、流量触发以及压力、支持水平等参数,取而代之的是膈肌电触发(EAdi trigger)和NAVA支持水平。NAVA中整个呼吸过程均由患者控制,实际获得的潮气量由患者的呼吸驱动大小决定,相较于传统的机械通气具有明显的优势<sup>[1]</sup>。多项研究表明,AECOPD时体内多种炎症介质显著升高,如C-反应蛋白(CRP)、血清淀粉样蛋白A(SAA)、人软骨糖蛋白-39(YKL-40)<sup>[2-4]</sup>。本研究结合NAVA相较于传统通气模式在提高人机协调性方面的优势,探讨NAVA模式较压力支持(PSV)模式在改善AECOPD患者炎症及氧化应激状态和提高脱机成功率方面的影响。 
  1资料与方法 
  1.1一般资料 
   收集天津市第一中心医院ICU 2012年11月至2014年1月期间收治的40例进行机械通气治疗的AECOPDⅢ级患者及25例健康体检者纳入研究。入选标准:符合2006年9月新版COPD全球创议(GOLD)中的AECOPD定义以及ATS和ERS 2004年的共识报道中定义的Ⅲ级(重度),出现急性呼吸衰竭,需入住ICU的患者。排除标准:严重呼吸抑制或需要深度镇静;高位截瘫;神经肌肉病变;食管梗阻;食管穿孔;严重食管静脉曲张出血;上消化道手术;严重心、肝、肾等脏器功能衰竭;血流动力学不稳定;妊娠和肿瘤终末期。所有入选的患者均知情同意,本研究获天津市第一中心医院医学伦理委员会批准。 
  1.2方法 
  1.2.1Edi导管放置 
   选择Edi导管(瑞典Maquet公司):导管深度选择:深度采用NEX法测量,即计算患者鼻梁(N),经耳垂(E)至剑突(X)的距离(cm),从而估计插入深度(Y=NEX×0.9+18)。根据预测深度经鼻放置Edi导管,并与呼吸机Edi模块相连。导管位置确认:Edi监测界面,4道心电图从上到下P波振幅逐渐减小,至第4道波P波消失,蓝色标记信号出现在第2、3道波形,出现稳定的EAdi波形,提示导管位置正确。 
  1.2.2基础机械通气及基础治疗 
   患者仰卧位,气管插管或气管切开接Servo-i呼吸机(瑞典 Maquet公司)。PSV和NAVA的支持程度,即压力水平和NAVA水平的设置,均以达到潮气量(Vt)6~8 mL/kg为标准。所有患者保留EAdi导管直至脱机后48 h并监测EAdi信号强度。所有患者予脏器支持、抗感染、保证内环境及血流动力学稳定等常规治疗,原发病基本控制后每日上午8:00—10:00进行撤机条件筛查,通过者进行自主呼吸实验<sup>[5]</sup>(SBT),实验成功者进入脱机程序。 
  1.2.3实验步骤 
   将入选40例患者根据“性别、年龄、APACHEⅡ评分、病史、PaCO2”五个因素水平按“不平衡指数最小的分配原则”随机分为PSV组和NAVA组。脱机策略:每组每日均进行撤机条件筛查,具备撤机条件者进行SBT。⑴PSV组20例,机械通气模式PSV,按照患者的耐受性逐步减低压力支持水平,每次减少2 cmH2O(1 cmH2O=0.098 kPa),同时降低PEEP水平。当压力支持减少至6~10 cmH2O,并符合撤机条件者进行SBT实验,SBT实验失败,继续PSV模式通气;⑵NAVA组20例,机械通气模式为NAVA,逐步降低NAVA水平,当NAVA水平位0.8~2.0 cmH2O /μV,并符合撤机条件者进行SBT实验,SBT实验失败,继续NAVA模式通气。 
  40例AECOPD患者于呼吸机辅助呼吸开始时第1天、第3天、第5天、第7天清晨7:00空腹抽取静脉血10 mL,然后用纤维支气管镜常规检查,首先要用利多卡因局部麻醉要灌洗的肺段,然后将支气管镜顶端紧密楔入段或亚段支气管开口处,再经活检孔通过硅胶管快速注入灭菌生理盐水,每次25~50 mL,总量100~250 mL,立即用负压吸引回收灌洗液,回收率约为80%,将回收液体用双层无菌纱布过滤除去黏液,取10 mL灌洗液装入无菌试管集中检测。 
  1.2.4监测指标(1)脱机成功率及预后监测: ①直接脱机成功率为主观上感觉舒适,生理参数稳定,Vt>5 mL/kg,无严重代谢性酸中毒和低氧血症或达到病前稳定水平为成功;患者不能咳痰,出现胸闷、出汗或发绀并伴有精神症状等;生理学参数明显变化(如f>30 次/min,HR较前增加>20 次/min,收缩压较前升高或下降>20 mmHg(1 mmHg=0.133 kPa),Vt<5 mL/kg,SaO2<0.9,PaCO2较试验前增加>20 mmHg)为失败。②间接脱机成功率即脱机失败后通过无创通气过渡成功。③48 h再插管率。④ICU住院天数。(2) 急性期炎症及氧化应激标记物的变化:分别检测患者相应时点血常规及血清CRP、SAA、YKL-40的质量浓度,并与健康对照组比较;再比较两组相应时点肺泡灌洗液中YKL-40的质量浓度。 1.3统计学方法 
  使用SPSS 11.7统计软件包进行数据分析,计数资料以率表示,组间比较进行χ2检验。计量资料以均数±标准差(x±s)表示,组间进行成组t检验或方差齐性检验,若方差齐性,用重复测量方差分析。方差不齐,采用Welch法。两个变量间相关分析采用Pearson相关分析。以P<0.05为差异具有统计学意义。 
  2结果 
  2.1患者一般资料 
      病例组40例,男29例,女11例,年龄48~84岁,(69.25±9.83)岁,病程5~30年。健康对照组25例,男17例,女8例,年龄(46.7±8.27)岁。两组患者年龄、性别、APACHEⅡ评分、初始PaCO2、PaO2/FiO2 均差异无统计学意义(P>0.05)。见表1。 
  2.2急性期炎症及氧化应激标记物的变化 
  2.2.1PSV组和NAVA组白细胞及中性粒细胞比例的比较PSV组和NAVA组在开始时白细胞数及中性粒细胞比例差异无统计学意义(P>0.05)。从第5天起,NAVA组白细胞数及中性粒细胞比例较PSV组显著降低,差异具有统计学意义(P<0.05)。第7天,NAVA组白细胞数与对照组差异无统计学意义(P>0.05)。见表2。2.2.2血清中PSV组和NAVA组各标记物质量浓度的变化PSV与NAVA组的CRP、SAA和YKL-40的质量浓度均较健康对照组明显升高(P<0.01),且两组随时间的进展,CRP、SAA和YKL-40的质量浓度逐渐降低(P<0.01)。在第1天,两组CRP、SAA质量浓度差异无统计学意义(P>0.05),在第3、5 天,NAVA组CRP、SAA质量浓度明显低于PSV组。两组血清中YKL-40的质量浓度在观察期间差异无统计学意义(P>0.05)。见表3。 
  3讨论 
  由COPD发展为AECOPD最重要的是感染因素,主要表现为炎性反应及氧化应激较前明显增强,循环中中性粒细胞和淋巴细胞被激活并明显增加,血浆中的IL-8和CRP等水平以及循环中中性粒细胞的黏附分子表达均显著增高<sup>[6-7]</sup>。本研究结果同样显示血CRP、白细胞数量及中性粒细胞比例较健康对照组显著升高。SAA亦称血清淀粉样蛋白A,与CRP相似,是在TNF-α及IL-6等炎性介质诱导下由肝脏产生<sup>[8]</sup>,上述这些炎症介质在AECOPD时是急剧升高的<sup>[9]</sup>。YKL-40亦称人类软骨糖蛋白39,其表达和分泌的增加与许多炎症反应为特征的疾病相关,如哮喘、COPD等疾病患者血浆YKL-40浓度显著升高,且参与此类疾病的病理生理过程<sup>[10-11]</sup>。本研究中同样也证实AECOPD患者血清中SAA和YKL-40的质量浓度较健康对照组明显升高。 
   损伤性机械通气引起细胞过度牵张、应激衰竭<sup>[12]</sup>,激活细胞内信号转导通路,导致中性粒细胞和巨噬细胞的激活和炎症介质的释放<sup>[13-15]</sup>。Brander等<sup>[16]</sup>研究表明,NAVA通气能够减少呼吸机相关性肺损伤、全身炎症反应及心肾功能受损。本研究中显示,NAVA组血清CRP和SAA的质量浓度较PSV组显著下降。原因可能是NAVA是唯一有可能监测和根据实时EAdi信号量化患者呼吸驱动的神经调节模式,实现同步呼吸,减少人机对抗,降低患者呼吸做功,改善人机协调性<sup>[17]</sup>,有利于防止炎症介质表达,改善肺损伤,从而有助于改善AECOPD患者体内的炎症及应激反应。 
   本研究结果还显示,两组血清中YKL-40的质量浓度差异无统计学意义,但在肺泡灌洗液中,NAVA组YKL-40的质量浓度较PSV组明显下降。同时YKL-40的水平在外周血与肺泡灌洗液中无明显相关性(P>0.05)。可能由于肺泡灌洗液主要反映局部炎症反应,通过NAVA的优势减轻气道压力,有利于气道及肺部分泌物通畅。而血主要反映全身炎症反应,其不仅受局部炎症反应的影响,也可能受一些危险因素、疾病本身的病理生理改变以及器官损伤所直接导致,如吸烟、肺气肿、组织缺氧、骨骼肌功能障碍<sup>[18-19]</sup>等原因不同程度的影响,还可能因二者具有不同的产生和调节途径,因此两者无相关性。 
  撤机是AECOPD患者治疗中的重要部分,但约10%~20%的患者产生呼吸机依赖,及早撤机可显著缩短住院时间、减少呼吸机相关性肺炎(VAP)及呼吸机相关性肺损伤(VILI)等并发症<sup>[20]</sup>。本研究显示,NAVA组直接脱机成功率高于PSV组,减少再插管及无创通气过度给患者带来的不良反应。可能原因是NAVA通过监测EAdi来感知患者呼吸中枢的驱动,触发呼吸机和实现吸呼气转换,并根据膈肌电信号强度大小,按一定比例提供呼吸机通气支持,能充分地减少患者呼吸的驱动以放松呼吸肌,减少呼吸肌负荷,可以有效地改善人机同步性<sup>[17]</sup>。同时研究还显示,NAVA组患者ICU住院天数低于PSV组。由此可以看出NAVA机械通气能够提高AECOPD患者的直接脱机率,减少带机时间,从而减少呼吸机相关损伤,有利于患者恢复及提高出院率。 
   综上所述,NAVA可以缓解AECOPD患者的炎症及应激反应,改善肺损伤,最终提高患者的直接脱机成功率,减少ICU住院时间,但其具体能否提高最终脱机成功率还需进一步研究。  参考文献 
  [1]Sinderby C,Navalesi P,Beck J,et al.Neural control of mecha-nical ventilation in respiratory failure[J].Nat Med,1999,5(12):1433-1436. 
  [2]Gao P,Zhang J,He X,et al.Sputum inflammatory cell-based classification of patients with acute exacerbation of chronic obstructive pulmonary disease[J].PLoS One,2013,8(5):e57678. 
  [3]Piras O,Travaqlino F,Autunno A,et al. Chronic systemic inflammatory syndrome in patients with AECOPD presenting to emergency department[J].Eur Rev Med Pharmacol Sci,2012,16(1):57-61. 
  [4]Matsuura H,Hartl D,Kang MJ,et al.Role of breast regression protein-39 in the pathogenesis of cigarette smoke-induced inflammation and emphysema[J].Am J Respir Cell Mol Biol,2011,44(6):777-786. 
  [5]王兵,王勇强,曹书华,等.神经调节辅助通气在AECOPD患者呼吸机撤离中的应用[J].中国急救医学,2011,31(9):772-776. 
  [6]Agusti A.Systemic effects of chronic obstructive pulmonary disea-se:what we know and what we don’t know(but should)[J].Proc Am Thorac Soc,2007,4(7):522-525. 
  [7]Chang C,Yao W.Time course of inflammation resolution in pati-ents with frequent exacerbations of chronic obstructive pulmonary disease[J].Med Sci Monit,2014,20:311-320. 
  [8]Bozinovski S,Hutchinson A,Thompson M,et al.Serum amyloid a is a biomarker of acute exacer-bations of chronic obstructive pulmonary disease[J].Am J Respir Crit Care Med,2008,177(3):269-278. 
  [9]Sapey E,Stockley RA.COPD exacerbations.2:aetiology[J].Thorax,2006,61(3):250-258. 
  [10]Letuve S,Kozhich A,Arouehe N,et al.YKL40 is elevated in patients with chronic obstructive pulmonary disease and activates alveolar macmphages[J].J Immunol,2008,181(7):5167-5173. 
  [11]Kuepper M,Bratke K,Virchow JC.Chitinase-like protein and asthma[J].N Engl J Med,2008,358(10):1073-1075. 
  [12]Vlahakis NE,Hubmayr RD.Cellular stress failure in ventilator-injured lungs[J].Am J Respir Crit Care Med,2005,171(12):1328-1342. 
  [13]Frank JA,Wray CM,Mcauley DE,et al.Alveolar macrophages contribute to aaveolar barrier dysfunction in ventilator-induced lung injury[J].Am J Physiol Lung Cell Mol Physiol,2006,291(6):1191-1198. 
  [14] Ricard JD,Dreyfuss D,Saumon G,et al.Production of inflammatory cytokines in ventilator-Induced lung injury:a reappraisal[J].Am J Respir Crit Care Med,2001,163(5):1176-1180. 
  [15] Bem RA,Woensel JSM,Bos AP,et al.Mechanical ventilation enhances lung inflammation and caspase activity in a model of mouse pneumovirus infection[J].Am J Physiol Lung Cell Mol Physiol,2009,296(1):46-56. 
  [16]Brander L,Sinderby C,Lecomte F,et al.Neurally adjusted ventilatory assist decreases ventilator-induced lung injury and non-pulmonary organ dysfunction in rabbits with acute lung injury[J].Intensive Care Med,2009,35(11):1979-1989. 
  [17]Sinderby C,Beck J,Spahija J,et al.Inspiratory muscle unloading by neurally adjusted ventilatory assist during maximal inspiratory efforts in healthy subjects[J].Chest,2007,131(3):711-717. 
  [18]Eickmeier O,Huebner M,Herrmann E,et al.Sputum biomarker profiles in cystic fibrosis(CF) and chronic obstructive pulmonary disease(COPD) and association between pulmonary function[J].Cytokine,2010,50(2):152-157. 
  [19]Dourado VZ,Tanni SE,Vale SA,et al.Systemic manifest-ations in chronic obstructive pulmonary disease[J].J Bras Pneumol,2006,32(2):161-171. 
  [20]Boles JM,Bion J,Gonnors A,et al.Wearing from mechanical ventilation[J].Eur Respir J,2007,29(5):1033-1056.