论文网
首页 基础教育小学数学正文

运用逆向思维找出巧妙规律——以北师大版“乘除法”教学为例

  • 投稿脑洞
  • 更新时间2015-08-30
  • 阅读量878次
  • 评分4
  • 90
  • 0

福建泉州师范学院附属小学(362000) 曾建军

小学数学乘除法是数学学习的基础,也是数学素养形成的基石。所以,小学数学教师要注重“乘除法”学习中学生思维能力的培养以及学生创新能力的提升。乘法和除法是互为逆向的过程,在对乘除法的学习和教学过程中,可以运用逆向反思的方法,引导学生进行逆向思维,从而找出解题的规律和技巧,提升教学效果。

一、数学命题中的逆向思维与叙述

数学命题是对某个问题的阐述,包括前提和结论两个部分,它是陈述问题的原因从而得出结果的一种形式。在长期的数学命题的叙述中,一般都是顺向叙述的方式,而忽略了对数学命题的逆向表述,也忽略了对学生逆向思维的训练。比如,电生磁逆过来是磁生电,从而法拉第的电磁感应定律被猜想出来,之后也被证实。数学教材中的顺逆公式、顺逆关系等也有很多,比如加减问题、乘除问题等,空间中的上下问题、左右问题等,运用逆向思维,可以将数学命题中的知识换个角度进行分析,从而获得不一样的数学体验。

在学习“乘除法”相关知识时,对数学命题进行逆向表述,可以更方便地讲述乘法和除法的关系,并且可以让学生对除法理解得更加深刻。乘法的定义是:几个相同的数相加,就等于这个数乘以加的次数。反过来,除法的定义为:这个数除以加的次数,就等于这个相同加数的值。

“乘除法”课后练一练中有这样一道题:一包糖有80块,若分给2人,每个人分得多少块?如果分给4人呢?8人呢?

例题讲解:运用数学命题的逆向思维方法,80块糖平均分给2个人,可以设想为,2个人每个人有多少块糖加在一起能得出80,2乘以几为8?由乘法口诀,我们知道2×4=8,再加0,得出每个人40块。以此类推,分别得出答案为40、20、10。

运用命题中的逆向思维,将数学除法中的问题转换为乘法问题,由学生熟悉的乘法口诀,就可以很容易地解答出问题的答案了。

二、数量关系中的逆向思维与分析

数学是表述数以及数字之间关系的一门科学,所以数量关系在数学的学习过程中非常重要。学生对数学的基本思考方式也是通过数量关系来存入脑海的。常用的分析数量关系的方法是顺推的方式,而在教学过程中,运用逆推的方法来分析数量之间的相互关系,可以创新学生的思维模式,提升学生的思考能力,从而为培养出具有创新能力的人才奠定基础。

以“乘除法”课后习题为例:李老师给售货员100元,售货员找给李老师4元,买了3个足球,每个足球是多少钱呢?

例题讲解:在分析数量之间的关系时,我们可以分析,当学生去商店买东西时,应付的钱数与哪两个方面有关?引导学生回答:应该与买的东西的单价以及买的数量有关,用买的单价乘以数量,就是要付的钱了。在本题中,付的钱为100-4=96元,那么由之前的逆向反思得出,一个数乘以3得96,很容易地就转换成了单价为总价与数量的商。运用数量关系的逆向思维,可以得到公式的变式,从而积累出更多的方法和解题规律。

三、数学问题中的逆向思维与转换

逆向问题和顺向问题是互为相反的过程,需要运用相反的思维方法解决。将问题进行逆向转换,正向问题的条件越多,转换成逆向问题的方式也就越多,也就更考验学生的思维能力和分析问题的能力。在教学过程中,应该引导学生对问题进行分析和理解,让学生了解问题的来龙去脉,这样学生不管应对哪种变式,才能应付自如。在乘除法的学习过程中,会遇到很多乘法和除法相互交叉的问题,只有理解了乘除法问题的精髓,灵活运用正向和逆向思维的交叉和转换,才能正确解答出比较复杂的问题。

例如:一共5只猴子,3只大猴子一天每只摘12个桃子,2只小猴子一天每只摘7个桃子,将所有桃子平均分给他们5只猴子,每只猴子有多少个桃子?

例题讲解:这题是乘除法相互交叉的题目。在分析这题时,运用逆向思维,桃子数=猴子×每只猴子摘的桃子数,得出大猴子摘了3×12=36个,小猴子摘了2×7=14个桃子,总桃子数目为14+36=50,那么每个猴子应该得到的桃子数目为50÷5=10个。数学问题中正向和逆向思维的交叉运用可以解决出比较复杂的问题。

四、数学解题中的逆向思维与应用

在数学解题中,也可以运用逆向思维从需要解决的问题出发,反过来探求问题需要的条件,与题目中的已知条件进行对比,并分析相互之间的关系,追果溯源,讨论问题的解决办法。比如,在乘除法问题中,要求积就需要知道是哪两个或者哪几个因子相乘,要求商就是乘法的逆过程,就得知道乘法中的积和某个因子。

例如:小白兔先把自己的蘑菇平均分成4堆,一堆自己留着,其他3堆送给别的兔子,之后又把自己的那堆平均分成3堆,自己留一堆,其他2堆给别的兔子,自己吃的那份有5个,问最初小白兔有多少个蘑菇?

例题讲解:根据逆向解题理念,由问题逐步反过来询问最初的原因,得到答案。小白兔最后是分成3堆,5个是其中一堆,说明之前是有3个5,也就是15个,而这15个又是第一次分了之后的,是4份中的一份,也就是之前有4个15,所以,得到最初有4×15=60(个)蘑菇。。

总之,在各行各业以及每门学科中,逆向反思都是具有实际价值的一种思维方式。在数学命题、数量关系、数学问题以及数学解题过程中,都可以应用逆向思维进行思维转换,从而找出巧妙规律,提高数学学习效率。

(责编 罗 艳)