论文网
首页 基础教育小学数学正文

挖掘教材,凸显思维价值

  • 投稿Char
  • 更新时间2015-08-30
  • 阅读量205次
  • 评分4
  • 91
  • 0

江苏淮安市人民小学(223002) 胡全会

随着课程改革的深入实施,课堂教学中,教师对教材的使用往往矫枉过正,出现随意重组教材内容、忽视知识系统衔接、人为拔高教学难度等情况,导致学生学习困难。针对以上现象,笔者认为,深入钻研教材,挖掘教材价值,既是发挥教材重要作用的主要途径,也是有效利用教材的根本所在。那么,该如何有效挖掘教材,发展学生的思维呢?下面,我根据教学研讨中的一些案例实践,谈谈自己的体会。

一、通读教材,熟悉整体架构

课堂教学的有效性,主要取决于教师对教学内容的整体把握和掌控。对于课堂教学来说,只有当教师对教材进行整体把握以后,才能够根据编排体系获得相应的教学思路和教学策略,进而设计有效的教学环节,为学生思维的发展搭建合理的“脚手架”。

例如,教学“长方体的认识”一课时,针对长方体的透视图,学生显然存在理解上的难度,一方面是因为教材没有单列专题进行研究,另一方面是由于学生的空间观念还没有建立有效的链接。而且,在平时的教学中,大多数教师对学生空间观念的建构不予以重视,只是在讲台上随便画一下,导致学生的体会比较肤浅,容易造成认知误区。针对这些现状,我校在进行集体研讨时对教材的整体架构做了分析,发现在二年级初次接触平面几何时,学生已经通过观察物体认识到“从不同的位置既可以看到不同的形状,也能看到不同的面,而且最多可以看到三个面”;而在三、四年级时,学生通过对物体的观察,建立了空间观念的初步认识——想要准确把握物体的形状,可以从正面、上面和左侧来观察感受。

通过对教材编排体系的整体研讨,我校教师对“长方体的认识”中长方体透视图的教学设计做了如下改进:先让学生上台观察长方体,看看从自己的角度能够看到几个面。学生根据自己所站的不同方向,可以分别看到正面、侧面和上面。教师追问:“那么,从一个角度观察,你最多能看到几个面?长方体一共有几个面?为什么最多只能看到三个面?”此时已有的认知经验很快有了用武之地,根据之前学过的观察物体的方法,学生发现长方体的六个面从一个方向观察并不能全部看到,最多只能看到三个面,如果要在平面图上表示出来的话,可以将看到的三个面直接画出来,将看不到的面用虚线来代替表示。从上述教学可以看出,教师对教材有了系统的解读和掌控,既突破了直观认识的教学模式,又根据教材的整体编排体系,发挥了学生的已有经验,还在沟通新旧知识间的联系时,实现了思维的连接和拓展,使学生自主建立了空间观念。

二、把握教材,设计有效活动

根据《数学课程标准》(2011版)对数学教学的要求,教师要在丰富学生学习经验的基础上,从有效的教学活动入手,使学生积累基本的数学活动经验。这里有两个方面的考量:其一,要引导学生掌握基本的数学知识和技能;其二,要促进学生的数学理解。这就需要教师对教材进行深入研究,并在读懂、读透的基础上把握其中的重、难点,然后根据学生的认知特点,设计有效的教学活动。因此,在课堂教学中,教师要引导学生深入探究,积累有效的数学活动经验,使他们自主建构数学概念。

例如,教学“圆锥的体积”一课时,根据以往的教学经验,学生计算圆锥的体积时往往容易忽略公式中的1/3,原因何在?我从教材入手,发现其研究模式如下:先直接出示问题并引导学生围绕问题形成初步猜想(圆柱体积=底面积×高,那么圆锥体积是它的几分之几呢),再让学生通过实验验证的方法,发现圆柱和圆锥体积之间存在1/3的关系,最终推导出圆锥体积的计算公式,即V=1/3Sh。根据教材的安排,我发现了问题所在,很显然,学生对1/3这个倍数关系的理解存在难度。那么,能否将教材中呈现与圆锥等底等高的圆柱的思路重新梳理,先让学生自主发现这个特殊的圆锥是从同一个圆柱中得到的唯一一个与之同底等高的圆锥后,再进行两者关系的猜测和推导呢?

由此,我设计了两个教学活动:活动(1),让学生通过学具进行动手操作和画草图,思考圆柱和圆锥体积之间的关系——将一块圆柱形木材削成圆锥形,可以削成什么样的圆锥?学生得到以下四种答案(如下图),并得出结论:与圆柱同底等高的圆锥只有唯一的一个。

活动(2),让学生观察图,并对等底等高的圆柱和圆锥体积之间的关系进行猜想。学生提出等底等高的圆柱和圆锥的体积之间存在倍数关系,有的认为是2倍,有的认为是3倍。此时,我进行追问:“是不是所有等底等高的圆柱和圆锥体积之间都有这样的关系呢?”学生进行验证操作,将圆锥中的水倒入圆柱后,发现圆柱中的水只有刻度的三分之一。这验证了学生的猜测,并由此推导出了圆锥的体积计算公式,即V=1/3Sh。在随后的练习环节中,我发现学生计算圆锥体积时没有一人忽略公式中的1/3,并且很多学生根据自己的理解,知道Sh(即圆柱的体积)除以3的由来。上述教学,我从教材入手,把握学生的学习难点所在,并掌握其中的两个关键:一是让学生认识圆柱和圆锥在同底等高的条件下具有唯一性;二是让学生建立圆锥和圆柱体积之间关系的猜想验证模式,然后设计有效的活动来激活学生的思维,促进他们对概念的理解。

三、整合教材,促进思维发展

教材就好比是一个压缩的范例,而教师的教学则是一个解压缩的过程,不仅要将不同版本的教材进行整合,而且要根据学生的实际情况,在尊重文本的前提下超越文本,使学生获得丰富的体验和感悟,从而促进学生思维的发展。

例如,教学“正比例”一课时,学生的学习难点是如何通过数量的变化体验,理解并确定变量之间存在的正比例关系。苏教版教材并没有针对两种变化的量进行专门的内容过渡安排,但在北师大版教材中则有一个过渡课时。为此,我根据班级学生的实际情况,将北师大版教材中针对生活情境中的变量关系进行整合,作为帮助学生积累基本数学活动经验的素材,唤醒学生看图找关系的相关经验,引导学生学会用联系、变与不变的思维方式来表征变化的量。于是,我设计三个层次的活动丰富学生的思维表象:(1)出示生活中小明体重的变化图(如下),让学生学会用不同的观察角度审视表格中的数据,培养学生的数学思维能力。

(2)出示骆驼的体温随时间变化的图(如下),让学生感受变化量的特点,并与第(1)个活动进行关联,培养学生的比较思维。

(3)运用关系式理解并确定数量之间的关系(如下图),使学生经历语言文字叙述变量关系转变为数学符号的过程。

通过以上教学,学生对两个变量之间的关系有了丰富的表征积累,使学生的观察能力、分析能力得到发展,为进一步过渡到数学抽象思维做好铺垫。

总之,在小学数学教学中,教师要切合学生的实际情况,从教材入手,挖掘其深层价值,才能使教材发挥最大的效用,促进学生的思维发展。

(责编 蓝 天)