浙江衢州市柯城区花园小学(324000) 谢小燕
[摘 要]课堂中的“差错”是指学生和教师在学与教的过程中,产生不正确的想法、说法等。课堂是允许学生出错的地方,学生在学习过程中出现“差错”是正常的、不可避免的。因此,在课堂教学中,教师应正确、巧妙地利用“差错”,培养学生的创造性思维,让课堂因“差错”不断呈现精彩。
[关键词]小学课堂 差错 容错 寻错 用错
[中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2015)05-050
课堂中的“差错”指学生和教师在学与教的过程中,产生不正确的想法、说法等。课堂是允许学生出错的地方,学生在学习过程中出现“差错”是正常的、不可避免的,教师如果处理不当,将会影响后继教学,甚至阻碍学生的发展。因此,教师要利用好“差错”所带来的契机,让“差错”成为一种宝贵的教学资源,赋予它特有的价值,为学生的发展服务。在小学数学课堂中,利用“差错”进行教学,既能激发学生内在的学习欲望,又能促使学生对已完成的思维过程进行周密且有批判性的再思考,从而引发争论、思辨,使课堂因此而变得灵动、精彩。
一、容“错”——“千树万树梨花开”
著名教育家卡尔·威特的教育秘诀之一,就是宽容地、理性地看待孩子的一切,包括错误。宽容、理性地对待学生的错误,是错误资源利用的根本前提。首先,错误是学习的必然产物。因为学生遇到问题时,不可能一下子就选对解决问题的途径,必然会出现思维受阻等情况,这时就必须另辟蹊径进行新的尝试,直到解决问题为止。认知心理学认为:“错误是学习的必然产物,学生的知识背景、思维方式、情感体验、表达形式往往和成人截然不同,他们在学习过程中出现各种各样的错误是十分正常的。”其次,“学生的错误都是有价值的”(布鲁纳语)。特级教师于永正在公开课中经常表扬学生:“于老师上课最喜欢发言说错的学生,我要给他发特等奖……”其实,于老师这样说,不仅仅是为了调动学生发言的积极性,还在于体现一个清晰的教育理念,即“错误也是一种宝贵的教学资源”。学生的错误中总会有些合理的成分或闪光之处,所以当学生在课堂上出现差错时,教师不能视而不见、充耳不闻,更不能埋怨、指责学生,而是要抓住“差错”所带来的契机,充分关注“差错”背后学生的真正想法,及时肯定学生的积极参与,用鼓励性的语言去评价学生。这样既能呵护学生的自尊心,又为后继学习营造了安全的心理氛围,学生才会毫无顾忌地发表自己的意见;这样师生间才会有认识上的沟通、心灵上的对话,才会出现“千树万树梨花开”那样一幅生气勃勃、生动活泼的教育画面。
二、寻“错”——“为有源头活水来”
寻找错误根源,是“差错”资源利用的基本途径。在以往的数学教学中,教师往往比较注重对错误的订正过程,忽视对学生所犯错误的分析。实际上,寻“错”是为了纠“错”,可以更加深入地了解学生产生错误的原因,便于教师针对原因纠“错”,有效发挥错误的积极作用。在实际教学中,我觉得学生产生错误的原因是多方面的。
如教学“乘法分配律”一课,学生用简便方法计算时,错误率非常高。如25×(4×8),学生经常会这样解答:25×(4×8)=25×4×25×8、25×(4×8)=25×4+25×8……学生出现上述错误,我认为既有学生学的原因,即学生对乘法分配律的意义没有真正理解,也有教师教的原因,即教师教学时没有整体把握所授知识,缺乏系统教学这一观念。因此,课堂教学中,教师要通过创设不同的情境,引导学生解决不同的问题,并通过延时评价、猜测验证、互动交流等途径,促进学生对乘法分配律的深刻理解和主动建构。
造成课堂“差错”的原因是多方面的,教师遇到学生的错误时要冷静分析、灵活纠正,带领学生从“错误”走向“正确”,因为“问渠哪得清如许,为有源头活水来”。
三、用“错”——“柳暗花明又一村”
英国心理学家贝恩布里奇说过:“错误人皆有之,作为教师不利用是不可原谅的。”学生在课堂中出现的“差错”作为珍贵的教学资源,既是可遇不可求的,又是稍纵即逝的。合理运用“差错”,是错误资源利用的重要策略。虽然有些“差错”是防不胜防的,但是学生出现的错误,反映了知识的易错点、注意点、关键点或思维的忽视区、盲区等。因此,教师在宽容学生错误、分析学生错误原因的基础上,更要对“差错”这一资源挖掘利用,化弊为利,培养学生的创造性思维。
1.让学生畅所欲言——善待“差错”
学生在课堂中出现“差错”,教师应把它作为教学的真正起点,站在学生的角度顺应他们的思维和认知,掌握其错误思维运行的轨迹,摸清其错误源头,然后对“症”下药,找到解决问题的办法。
如教学“约数和倍数”一课时,教师让学生寻找36的全部约数,这个学习任务对于每个学生来说,只是存在量的部分与全部之别,思考时有序和无序之分。出示这道题的教学目的是让学生主动发现和理解有序地找出一个数的全部约数的方法,教师在反馈交流时出示了一个学生写了部分约数的答案,即1、2、3、4、6、9、12、36。教师没有马上给予评价,而是让全班学生当小老师发表意见。一生说:“他漏掉了一个约数18。”教师问:“你们的意见呢?”统一全班学生意见后,教师追问:“你怎么这么快就知道漏掉了一个约数18?你能告诉大家有什么秘诀吗?”围绕这个问题,学生明白了要一对一对地找一个数的约数,同时生成以下相应的算式:1×36=36,2×18=36,3×12=36,4×9=36,6×6=36。这样教学,能使学生进一步理解一对一对找一个数的约数的方法,并体验到它的优点。然后教师继续让学生讨论“约数6为什么只写一个”的问题,引导学生体验有序思考的重要性。上述教学中,教师采取将错就错的策略,巧妙地创造了一个民主、平等的教学环境,引导学生畅所欲言,这样教学比教师直接告诉答案更有效。因此,在课堂教学中,学生出现的“差错”只要合理,教师不妨试一试将错就错,让学生畅所欲言,因为学生在去伪存真、去粗取精的求知过程中,所学得的知识才会真正被他们内化吸收,这也是善用“差错”资源的真谛。
2.给学生提供材料——纠正“差错”
课堂教学中,经常会有一些学生回答或理解错误,这时教师不要轻易地判断对与错。首先,教师要肯定学生的积极参与,用鼓励性的语言去评价,使学生拥有愉快的心情。其次,教师要留给学生思考的时间和空间,让学生自己去发现“差错”。作为教师,不应急于用自己的思想去同化学生的错误观点、错误认识,有时可以让学生自己通过提供的材料来进一步理解发生的错误,使课堂因此精彩纷呈。
如教学环形面积的计算时,学生解题的正确率不高,经常用S环形=π(R-r)2、S环形=πD2-πd2等公式计算环形的面积。针对学生出现的易错问题,教师找准教学的切入点,先让每个学生自制一个环形图,然后让学生带着自制的环形图上台展示并说一说。生1:“在硬纸板上,我先用圆规画一个大圆,然后缩短圆规两脚间的距离,圆心不变,再画一个小圆,最后把小圆剪掉就得到环形。”生2:“在硬纸板上,我先用圆规画一个圆,然后圆心不变,再画一个更大的圆,最后把小圆剪掉就得到环形。”教师提问:“前面两位同学都说到了哪几点?”生3:“都说到了要画两个圆,而且圆心不变,半径大小不同,然后从大圆里减去小圆,就得到环形。”……教师选择学生提供的有代表性的三个环形图(如下),提问:“环形中阴影部分的大小就是环形的面积,你能比较出这几个环形面积的大小吗?”生4:“第一个环形的面积比第二个环形大,因为它们的外圆是一样大的,所以内圆小一点的那个环形面积就大些。”生5:“第二个环形的面积比第三个环形大,因为它们的内圆一样大,所以外圆大一点的那个环形面积就大。”生6:“第一个环形的面积比第三个环形大,因为第一个环形内圆小一些,并且外圆大一些。”教师追问:“那么,环形的面积到底与什么有关系?”生7:“环形的面积与环宽有关系。”生8:“环形的面积与外圆、内圆的面积有关。”生9:“环形的面积与半径有关,所以环形的面积应与外圆、内圆的半径有关。”……学生的思维异常活跃,因为自己提供的验证材料总是最亲切、最喜欢的。通过验证比较,大家统一了答案,即S环形=π(R2-r2)。
3.引学生猜测验证——理解“差错”
在动态生成的课堂中,学生出现“差错”是可以预设的,也可以是非预设的,但总体来说,非预设的一般会更多些。前者由于在意料之中,应对策略胸有成竹,处理也就得心应手。因此,教师教学前不妨事先预设学生可能出现的“差错”,进而正视它、研究它,教学中用“猜测——验证——结论”这一科学研究方法让学生暴露思维的错误过程,把学习过程中生成的“差错”变成为学生数学学习的最佳素材之一。
如教学“平行四边形的面积”时,课伊始,教师提问:“前面我们学习了长方形的面积计算方法是用长乘宽计算的,今天我们来学习新的内容(板书:平行四边形的面积),平行四边形的面积是怎样计算的呢?”有的学生说“平行四边形的面积是用相邻的两条边相乘得出的”,有的学生说“平行四边形的面积等于底乘以高”。教师接着问:“‘猜测——验证——结论’是我们科学研究的一种重要的方法,让我们也像科学家一样来研究平行四边形的面积到底该怎样计算。请你们找到和自己想法一样的同学组成一组,领取材料后一起研究自己的想法是否和自己的猜测一样。”研究结束后,学生认为平行四边形的面积等于底乘高,原来认为平行四边形的面积等于相邻的两条边相乘的那一组学生都“叛变”了。于是教师继续提问:“你们为什么要换组呢?”学生说:“我们通过测量、计算,发现这些平行四边形的两条邻边相乘的积不等于拼成的长方形面积,所以我们的猜测应该是错的,所以我们换组了。”然后,教师继续请猜测平行四边形的面积用底乘以高的方法计算的学生汇报结果。一生说:“我们先从平行四边形的一个顶点出发画出它的一条高,发现如果沿着这条高剪出来的三角形把它拼到平行四边形的另一边,拼成的长方形的面积等于平行四边形的面积,因为长方形的面积等于长乘宽,所以我认为平行四边形的面积等于底乘以高。”另一生说:“老师,我觉得不一定要沿着这条高画,只要在平行四边形的一组对边之间随便画一条高,然后沿着这条高剪开,剪成的两个四边形也能拼成一个长方形。”还有一学生说:“我只要沿着平行四边形的一条高剪开,然后把两部分拼在一起就能拼成长方形,求出长方形的面积就能求出平行四边形的面积。”……教室里发出了雷鸣般的掌声。在这个过程中,学生思维活跃,自己猜测验证并概括出了平行四边形的面积计算公式。
在课堂教学中,每个“差错”资源的不同处理策略,折射出教师不同的教学理念。只要我们树立正确的“差错”资源观,化腐朽为神奇,为开展教学活动、解决教学问题服务,遵循“一切为了学生的全面发展为本”的理念,正确地、巧妙地利用“差错”,就能培养学生的创造性思维,让课堂因“差错”不断呈现精彩。
(责编 杜 华)