论文网
首页 基础教育中学数学正文

高中数学研究性学习实践研究

  • 投稿Lesl
  • 更新时间2015-09-23
  • 阅读量580次
  • 评分4
  • 17
  • 0

牛晓伟

(通渭县第一中学,甘肃 通渭 743300)

研究性学习是学生在教师指导下,从自然、社会和生活中选择和确定专题进行研究,以类似科学研究的方式主动地获取知识、应用知识、解决问题,并在研究过程中通过多种渠道主动地获取知识、应用知识、解决问题的学习活动。实施以培养创新精神和实践能力为重点的素质教育,关键是改变教师的教学方式和学生的学习方式。设置研究性学习的目的在于改变学生以单纯地接受教师传授知识为主的学习方式,为学生构建开放的学习环境,提供多渠道获取知识、并将学到的知识加以综合应用于实践的机会,培养创新精神和实践能力。

1 研究性学习的特点

研究性学习具有开放性、探究性和实践性的特点,是师生共同探索新知的学习过程,是师生围绕着解决问题共同完成研究内容的确定、方法的选择以及为解决问题相互合作和交流的过程。

1.1 开放性

研究性学习的内容不是特定的知识体系,而是来源于学生的学习生活和社会生活,立足于研究、解决学生关注的一些社会问题或其他问题,涉及的范围很广泛。它可能是某学科的,也可能是多学科综合、交叉的;可能偏重于实践方法,也可能偏重于理论研究方面。

研究性学习,要求学生在确定课题后,通过媒体、网络、书刊等渠道,收集信息,加以筛选,开展社会调研,选用合理的研究方法,得出自己的结论,从而培养了学生的创新意识、科学精神和实践能力,它的最大特点是教学的开放性。

(1)教学内容是开放的。天文地理、古今中外,只要是学生感兴趣的题目,并有一定的可行性,都可作为研究课题。

(2)教学空间是开放的。强调理论联系实际,强调活动、体验的作用。学习地点不再限于教室、实验室和图书馆,要走出校门进行社会实践;实地勘察取证、走访专家、收集信息等等。

(3)学习方法、思维方式是开放的。针对不同目标,选择与之适应的学习形式,如问题探讨、课题设计、实验操作、社会调查等。要综合运用多门学科知识,分析问题、解决问题的能力增强了,思维方式从平面到立体,从单一到多元,从静态发展到动态,从被动发展到主动,从封闭到开放。

(4)收集信息的渠道是开放的。不是单纯从课本和参考书获取信息,而是从讲座、因特网、媒体、人际交流等各种渠道收集信息。

(5)师生关系是开放的。学生在研究中始终处于主动的地位,教师扮演着知道者、合作者、服务者的角色。提倡师生的辩论,鼓励学生敢于否定。

1.2 探究性

在研究性学习过程中,学习的内容是在教师的指导下,学生自主确定的研究课题:学习的方式不是被动地记忆、理解教师传授的知识,而是敏锐地发现问题,主动地提出问题,积极地寻求解决问题的方法,探求结论的自主学习的过程。因此,研究性学习的课题,不宜由教师指定某个材料让学生理解、记忆,而应引导、归纳、呈现一些需要学习、探究的问题。这个问题可以由展示一个案例、介绍某些背景或创设一种情景引出,也可以直接提出。可以自教师提出,也可以引导学生自己发现和提出。要鼓励学生自主探究解决问题的方法并自己得出结论。

1.3 实践性

研究性学习强调理论与社会、科学和生活实际的联系,特别关注环境问题、现代科技对当代生活的影响以及社会发展密切相关的重大问题。要引导学生关注现实生活,亲身参与社会实践性活动。同时研究性学习的设计与实施应为学生参与社会实践活动提供条件和可能。

2 数学研究性学习

数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和相互交流为主要学习方式的学习研究活动。它能营造一个使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。数学研究性学习更加关注学习过程。

2.1 数学研究性学习课题的选择

数学研究性学习课题主要是指对某些数学问题的深入探讨,或者从数学角度对某些日常生活中和其他学科中出现的问题进行研究。要充分体现学生的自主活动和合作活动。研究性学习课题应以所学的数学知识为基础,并且密切结合生活和生产实际。新高中数学新教材将按《新大纲》的要求编入以下课题,供参考选用,当然教学时也可以由师生自拟课题。提倡教师和学生自己提出问题。

新高中数学新教材研究性学习参考课题有六个:数列在分期付款中的应用,向量在物理中的应用,线性规划的实际应用,多面体欧拉定理的发现;杨辉三角,定积分在经济生活中的应用。其教学目标是:(1)学会提出问题和明确探究方向;(2)体验数学活动的过程;(3)培养创新精神和应用能力;(4)以研究报告或小论文等形式反映研究成果,学会交流。

2.2 数学开放题与研究性学习

数学开放题的常见题型,按命题要素的发散倾向分为条件开放型、方法开放型、结论开放型、综合开放型;按解题目标的操作摸式分为规律探索型、量化设计型、分类讨论型、数学建模型、问题探求型、情景研究型;按信息过程的训练价值分为信息迁移型、知识巩固型、知识发散型;按问题答案的机构类型分为有限可列型、有限混沌型、无限离散型、无限连续型。

2.3 数学研究性学习中开放题的编制方法

无论是改造陈题,还是自创新题,编制数学开放题都要围绕使用开放题的目的进行,开放题应当随着使用目的和对象的变化而改变,应作为常规问题的补充,在研究型课程中适合学生研究性学习的开放题应具备起点低、入口宽、可拓展性强的特点。

用于研究性学习的开放题尽量能有利于解题者充分利用自己已有的数学知识和能力解决问题。编制的开放题应体现某一完整的数学思想方法,具有鲜明的数学特色,帮助解题者理解什么是数学,为什么要学习数学,以及怎样学习数学。开放题的编制不仅是教师的任务,它的编制本身也可以成为学生研究性学习的一项内容。

数学开放题的编制方法:

(1) 以一定的知识结构为依托,从知识网络的交汇点寻找编制问题的切入点。能力是以知识为基础的,但掌握知识并不一定具备能力,以一定的知识为背景,编制出开放题,面对实际问题情景,学生可以分析问题情景,根据自己的理解构造具体的数学问题,然后尝试求解形成的数学问题并完成解答。

(2)以某一数学定理或公设为依据,编制开放题。数学中的定理或公设是数学学习的重要依据,我们可以设计适当的问题情景,让学生进行探究,通过自己的努力去发现一般规律,体验研究的乐趣。

(3)从封闭题出发引申出开放题。我们平时所用习题多是具有完备的条件和确定的答案,把它称之为封闭题,在原有封闭性问题基础上,使学生的思维向纵深发展,发散开去,能够启发学生有独创性的理解,就有可能形成开放题。

(4)为体现或重现某一数学研究方法编制开放题。数学家的研究方法蕴涵深刻的数学思想,在数学研究性学习中让学生亲身体验数学家的某些研究,做小科学家,点燃埋藏在学生心灵深处的智慧火种。以此为着眼点编制开放题,其教育价值是不言而喻的。

(5)以实际问题为背景,体现数学的应用价值编制开放题。在实际问题中,条件往往不能完全确定,即条件的不确定性是自然形成的或是实际需要,其不确定性是合理的。如包装的外型,花圃的图案,工程的图纸这些是需要设计的,而由于考虑的角度不同,设计者的知识背景、价值判断不同,得出的方案也会不同。

以实际问题为背景,编制出设计类型的开放题,用于研究性学习,可以培养学生创新精神和实践能力。第19届国际数学教育心理会议的公开课问题:“在一块矩形地块上,欲辟出一部分作为花坛,要使花坛的面积为矩形面积的一半,请给出你的设计。”是一道公认的开放题,花圃的图案形状没有规定性的要求,解题者可以进行丰富的想象,充分展示几何图形的应用,这种以实际问题为背景编制的开放题往往有趣而富有吸引力。

[责任编辑:薛俊歌]