论文网
首页 基础教育中学数学正文

如何让数学课堂活起来

  • 投稿彻悟
  • 更新时间2015-09-03
  • 阅读量617次
  • 评分4
  • 89
  • 0

到我们学校来就读的学生大部分是因为成绩不佳、家庭经济条件差等原因已无择校机会而就近入学的学生,这些原因也就构成了学生从小在学习时没有一个良好的学习环境,在家学习时没有得到来自家长的较严格督促和指导,在面对学习困难时也基本得不到有效帮助,在面对挫折时也很难得到及时的疏导和鼓励,在我的家访中能发现更有一部分家庭,由于父母工作不顺利、家庭其他问题等原因,家长对学生在学习中遇到的失败简单以责骂甚至拳脚对待,或者不管不问,这些都是导致学生怕数学,甚至讨厌数学的主要原因之一。

长期以来我们的数学教学还常常处于“教材是什么,我们就教什么”,有时我们把数学与生活的天然联系割裂开来,鲜活的数学异化成了纯粹的符号系统,成了游离于生活之外的另一抽象的世界。这也是学生感觉数学枯燥无味的一大原因。

从学生的思维特点看,他们的思维是具体、形象的,他们对数学概念理解不是按我们成人意志“直接教会学生的”,而是要通过学生的形象思维,借助对客观事物表象的理解后而产生的。单一的接受式教学让学生感觉数学的学习是那样的单调,呆板,毫无乐趣。对于学生的家庭现状我无力去改变,唯一我能做的是改变我的教学方法,去适应学生的要求。于是结合数学自身的特点,遵循学生学习数学的心理规律去创设情景,从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用,在传授知识的同时,创设更多让学生感受和体验的过程,进而使学生获得对数学知识的理解。

主要我尝试了以下做法:

1.创设有效情景,引入课题,在课堂一开始就牢牢抓住学生的注意力。

例如我在教数学代数式时采用了如下方法:测量自己未来身高,首先我先问我的学生想知道自己的未来身高吗?他们听后一起说:“想”。我就在黑板上写下了两个公式,男孩成人身高:(X+Y)/2*1.08,女孩成人身高:(0.923X+Y)/2。其中X表示父亲的身高,Y表示母亲的身高。学生都怀着极高的兴趣,以极快的速度计算着,很快,每个学生的预测身高都出来了,他们兴奋地互相报着,带着惊奇的表情,有个男生脱口而出:“哇!我能长到一米八五!”此时,我不失时机地讲着:“每位同学求出的这个数值,就叫做这个代数式的值,刚才大家用自己的父母身高代替x、y计算的过程就是求代数式的值。”学生恍然,而且印象深刻。这样的例子能举很多,把数学和生活联系起来,让学生明白数学并不是遥不可及、枯燥无味的知识,它就发生在我们身边。

2.在课堂教学中,多开展观察、实验、猜测、验证、推理与交流等数学活动,让学生在亲身的体验之中去发展智力,提高数学能力。

《整式的乘法》是七年级上的重要内容,它是初中阶段数学运算的重要基础,其中包括的基本运算很多,如同底数幂的乘法、幂的乘方、积的乘方,在此阶段的学习对于学生来说是一个重点更是一个难点。当然直接告诉学生运算法则,然后死记硬背也能让学生开展计算,这样的教学也容易简单的多,但是这样的教学效果是暂时的,不持久的。我在课堂上组织学生通过观察一系列的式子,让学生猜测其中可能包含怎样的运算法则,然后再验证同学所作的猜测,整个过程始终让学生交流,让学生体验学习的过程,对于知识的把握有实际理解何感受,由于这样的授课方式,在我讲到《积的乘方》这一节课时,学生已经学会了“观察——猜测——验证”这种解决数学问题的思维方式。通过这些数学活动,学生对知识的产生有一个直观、清醒的知识体验过程,虽然我从没让学生默写背诵过这些公式,但是这些公式却在学生心里扎下了根。

3.创设操作活动,让学生体验直观的数学感受。

在课堂教学中要为学生搭建活动、操作的平台,具体做法是,把数学问题设计成“动手操作题”。我在教学探索直线平行的条件一课时,先设疑:同学们把准备好的一副三角尺拿出来,利用一副三角尺上的一对直角,能否拼成同位角、内错角、同旁内角?学生分小组讨论,然后让学生自己动手操作。有的学生拼出了同位角,有的学生拼出了内错角,还有的学生拼出了同旁内角,这时就可以给出两条直线平行的条件。这种方法会让学生的记忆更加深刻。在讲解《对长方体的再认识》这一章内容时,由于是立体的几何图形,我用一个具体长方体的盒子培养学生的空间想象能力,实践证明,学生对长方体知识的掌握非常好,在期末考试中只有1名同学在一道关于长方体的选择题上出错。借助于这种方法帮助学生理解知识,收到了很好的效果。

4.换位思考,体验学生的思考方式,让学生在感受中明白自己思维的误区,从而强化对正确数学知识的理解。

我想,无论采取哪种教学方式,学生在理解的过程中总会与教师的愿望有所偏差,那么我们不妨反其道而行之,顺着学生的思路,让学生自己体会与感悟,从而选择正确的思考问题的方式。例如:我在上《分组分解法因式分解》时,我想让同学理解,判断正确分组的依据是:产生新的公因式或能继续用其他方法分解下去,但是同学的理解却不是这样,比如分解因式6k2+9km-6mn-4kn,我想教会学生此题的分组方法可以是一、二项一组,三、四项一组,或者一、四项一组,二、三项一组,但是此时有部分同学有不同意见,他们认为一、三项一组,二、四项一组也行,我这时没有直接告诉学生这样的分组方式不好,而是顺着学生的思维,板演了他们的做法,当要继续往下分解时,学生却发现不能分解了,我马上抓住这个机会,纠正了学生的思维错误的同时,让学生总结正确分组的依据,学生对这一知识的掌握就是牢靠的。

(作者单位:贵州省遵义市第一初级中学)