论文网
首页 基础教育中学数学正文

关于高中数学导数公式的应用研究

  • 投稿全球
  • 更新时间2015-09-03
  • 阅读量387次
  • 评分4
  • 97
  • 0

文/郝利军

【摘 要】在高中新课标改革的背景下,通过利用高中数学导数的公式对问题的分析和解决是非常重要的,对数学导数应用的价值是显而易见的,在高中数学导数的公式应用中必须要贯穿着函数的思想,能够应用高中数学导数公式对函数的切线进行解决,对函数极值的求解,判断函数的单调性,对高中数学导数公式的应用有着扩大领域的趋势,对新课改数学题目研究中,有逐步加强的趋势。

教育期刊网 http://www.jyqkw.com
关键词 高中数学;导数公式;应用研究;函数的思想

在高中对数学导数公式的应用非常广泛,由于在高中理科中,数理化有着相互融合相互渗透的效果,所以在对高中数学导数公式中也可以对物理、化学进行一定的应用,在对高中数学导数公式进行应用中,要求学生们能够有着充分的解题思路,对高中数学导数公式进行一定的推导,能够使得在对问题的解答中将复杂的问题进行一步步的简单化,不仅能够增加学生们在解题中形成的信心,而且还能够促进学生们对高中数学的学习。

一高中数学导数公式在解题中的应用

(一)利用高中数学导数公式对函数切线的求解

1.在导数的几何意义中,曲线在某点的导数值就是曲线在该点的切线斜率,在对函数的应用中,要特别注意函数在某点处可导,曲线就在该点存在切线,但是曲线在该点有曲线,未必就有可导性。

2.例子:函数f(x)在点a处导数的意义,它就是曲线y=f(x)在点坐标P(a,b)处的切线的斜率,在对函数切线进行求解时,假设曲线y=f(x)在点P(a,b)处切线的斜率就是f'(a),则相应的切线方程就是y-b=f'(a)(x-a)。

(二)利用高中数学导数公式对函数的极值的求解

1.在高中数学利用导数对函数值的求解中,能够显现出导数对函数极值求解的应用。

2.例子:求f(x)=x3-12x的极值

解:把函数的定义域为R,f'(x)=3x2-12=3(x+2)(x-2),设f'(x)=0,得到x=±2,当,x>2或x<-2时,,f'(x)>0,所以函数在(负无穷,-2)和(2,正无穷)上是增函数;当-2<x<2时,f'(x)<0,所以函数在(-2,2)上是减函数,所以当x=-2时,函数有极大值为f(-2)=16,当x=2时,函数有极小值为f(2)=-16能够利用导数公式对函数极值进行求解中,应该从方程f(x)=0出发,可以更加准备的得到函数的大小极值。

(三)利用高中数学导数公式对函数的单调性进行判断

1.在数学坐标系中,对函数的单调性进行判断,可以根据切线上的斜率来判断,当切线的斜率大于零时,就可以准确的判断出单调的递增,当斜率为正时,判断出函数的单调为递增的,当斜率为负时,判断出函数的单调为递减的。通过利用导数对函数的单调性分析中,也可以对函数单调区间问题进行解决。

2.例子:一次函数y=kx-k在R上单调递增,它的图像过第几象限?

解:从一次函数中可以简单的看出函数必过坐标(1,0),所以说函数过第一和第四象限,又因为一次函数是单调递增的,所以k>0,可以分析出函数过第三象限,所以说它的图像过第一,第三,第四象限。

例子:求函数f(x)=x3-3x+1的单调区间

解:当f(x)=x3-3x+1,可以得出f'(x)=3x2-3,当3x2-3=0,即x=±1时,f(x)有极值=3和-1,因为x=2,f(2)=3;x=1,f(1)=-1;x=0,f(0)=1;x=-1,f(-1)=3;x=-2,f(-2)=-1。所以说,函数在(负无穷,-1]单调递增,在[-1,1]单调递减,在[1,正无穷)单调递增。

二、高中数学导数应用的价值

在对高中数学导数公式的利用中,要始终坚持函数的思想,能够更方便的去解决问题,由于在高中理科的学习中,都会用到导数的应用,在一些重要的概念中都会用导数来进行表示,在物理的学习中,对远动物体的瞬时速度和加速度都可以用导数来表示。导数公式的应用,是有函数推导出来的过程,运用导数公式推导的过程,也是巩固数学的过程,在对函数进行求解时,要明确的掌握和运用导数的公式,在导数的运用中不仅是在学习中对函数的求解,而且还能在生活中运用,在实际生活中遇到求效率最高,利润最大的问题,这些问题在高中数学导数中可以看做是函数的最大值,把这些问题转换为高中数学函数的问题,进而对变为求函数的最大值的问题,在对高中数学导数公式进行应用,不仅要掌握了解公式导数的概念和方法,而且还会把数学导数与其它的知识进行结合,能够在解决问题中找到合适的办法。

三、对高中数学导数公式应用后的反思

近年来,在高考中,高中数学的导数公式的地位越来越重,它已经成为解决数学问题中必不可少的一种工具,在教学中,要让学生们充分的了解数学的导数公式,要重视课堂的教学,教师们要了解学生们在应用导数公式中出现的各种问题,老师们要针对这些问题,对学生们再一次的进行讲解,能够使得学生们在解决问题中更熟练的应用导数公式,在教学中,要从导数的定义进行讲解,能进一步的增强学生们对导数学习的兴趣,能让学生们了解到不论是在学习中还是在生活中,对导数的应用是非常重要的。

结语:

综上所述,在高中数学中对导数公式的应用是非常重要的,在利用导数进行解决函数的问题中,要始终贯穿函数的思想,可以对函数的单调性,函数的区间,函数的切线,函数的极值进行问题上的解决,在新课标改革的背景下,要培养学生们正确的掌握导数公式的应用,对于导数在解决问题中有着积极的作用,能够为以后导数公式的学习打下了坚实的基础。

教育期刊网 http://www.jyqkw.com
参考文献

[1]王利,邓鹏.加强高中与大学导数公式知识的衔接[J].教学学习与研究,2012(17)

[2]王彩霞.浅谈三角函数的几种解法[J].中学教学(上),2012(08)

[3]程守权.高效数学课堂的设计意图展现—案例分析“应用导数研究函数的最值”[J].高中数理化,2012(02)

[4]农仕科.关于高中数学导数公式的应用研究[J].教学参谋(解法探究),2014(02)

[5]赵波.谈解答数学题的几种意识[J].中学教学(上),2011(03)

(作者单位:内蒙古包头市回民中学)