论文网
首页 基础教育中学数学正文

建模探究润物无声———初中数学建模教学课堂的研究《一次函数》教学探究

  • 投稿Bin
  • 更新时间2015-09-03
  • 阅读量398次
  • 评分4
  • 84
  • 0

文/孙兰香

【摘 要】义务教育数学课程标准,特别强调注重发展学生的模型思想,使学生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、解决问题的过程。而这个过程其实就是数学建模的一般过程,即“将实际问题进行简化归结为数学问题并求解的过程”。

教育期刊网 http://www.jyqkw.com
关键词 初中;数学;建模;思想

数学建模教学的基本环节以“问题情景——建立模型——解释、应用与拓展”的基本叙述方式,使学生在朴素的问题情景中,通过观察、操作、思考、交流和运用,掌握重要的数学观念和思想方法,逐步形成良好的数学思维习惯,强化运用意识。这种教学模式要求教师以建模的视角来对待和处理教学内容,把基础数学知识学习与应用结合起来,使之符合“具体——抽象——具体”的认识规律。

本文从《一次函数》教学为例,谈谈对初中数学建模教学的一些研究。本人教学一般围绕五个基本环节。

一、创设问题情景,激发求知欲

情境:给汽车加油的加油枪流量为25L/min。如果加油前油箱里没有油,那么在加油过程中,用y(L)表示油箱中的油量,x(min)表示加油时间。

(1)y是x的函数吗?说说你的理由。

(2)y与x之间有怎样的函数表达式?

(3)如果加油前油箱里有6L油,y与x之间有怎样的函数表达式?

从学生的生活经验和已有的知识背景出发,选择合适的情境,让学生带着问题在迫切要求下学习,为知识的形成做好情感上的准备,并提供给学生充分进行数学实践活动和交流的机会。

二、抽象概括,建立模型,导入学习课题

由上面的情境,我们得到了两个函数关系,前面我们也得到一些函数关系式,如:、y=100t、g=h-105这些函数关系式有什么共同特点?

一般地,如果两个变量x与y之间的函数关系,可以表示为y=kx+b(k、b为常数,且k≠0)的形式。那么称y是x的一次函数(linearfunction)。

特别地,当b=0时,y叫做x的正比例函数。所以正比例函数是特殊的一次函数。

通过学生的实践、交流,发表见解,整理、描述,抽象其本质,概括为我们需要学习的课题—一《一次函数》,渗透建模意识,学生应是这一过程的主体,教师适时启发与引导得出一次函数和正比例函数模型,也让学生感受到正比例函数是一次函数的特例。

三、研究模型,形成数学知识

1.在上面我们所讨论的一次函数y=25x+6、y=25x、、y=100t、g=h-105哪些是正比例函数,哪些不是正比例函数;

2.同桌之间互写三个一次函数的表达式,并指出其中的k、b.

小结:通过上面的研究,我们发现,判断一个函数是否为一次函数,实际上,只要去看它的函数表达式是否具备y=kx+b(k、b为常数,且k≠0)的形式;判断一个函数是否为正比例函数,实际上,只要去看它的函数表达式是否具备y=kx(b为常数,且k≠0)的形式。对所建立的模型,灵活运用启发式、尝试指导法等教学方法,以教师为主导,学生为主体完成课题学习,形成数学知识、思想和方法,并获得新的数学活动经验。

四、解决实际应用问题,享受成功喜悦

巩固练习:1.水池中有水465m3,每小时排水15m3,排水th后,水池中还有水ym3。试写出y与t之间的函数表达式,并判断y是否为t的一次函数,是否t的正比例函数。

2.一个长方形的长为15cm,宽为10cm.如果将长方形的长减少xcm,宽不变,那么长方形的面积y(cm2)与x(cm)之间有怎样的函数表达式?判断y是否为x的一次函数,是否为x的正比例函数。

应用我们得到的数学模型到实际中去,并用它去解决很多来自日常生活及经济中的问题。使学生能体会到数学在解决问题时的实际应用价值,体验到所学知识的用途和益处,成功的喜悦油然而生。

五、归纳总结,深化目标

根据教学目标,指导学生归纳总结,不仅可以帮助学生梳理知识、理清脉络,而且还能够起到提升认识、内化认知结构的作用。老师、同学、自己三方融为一体进行知识梳理、答疑、解惑,很好的发挥了学生的主观能动性,有利于培养学生的反思能力、问题意识。同时体会和掌握构建数学模型的方法,深化教学目标。

教学反思:

新课程强调,数学教学应从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

数学模型是通过学生讨论、交流,亲身体验将实际问题抽象成数学问题的过程,以及应用数学模型解决实际问题的过程。在教学中,教师不仅仅满足于将实际问题转化为数学问题,更注重方法的提炼,注重培养学生的发散性思维能力,强调用不同的数学模型解决同一实际问题以及用同一数学模型解决不同的实际问题。

有效的数学学习活动不能单纯地依赖模仿,自主探索、合作交流是学生学习数学的重要方式。在教学中,一方面,教师留给学生足够的空间独立思考,自主探索,尝试从不同的角度去寻求解决问题的方法,让每个学生在独立思考的基础上,都有自己对问题的理解,使他们体验到解决问题策略的多样性,另一方面在解决问题的过程中,引导学生与他人合作,分组开展讨论、交流。

(作者单位:南京市紫东实验学校)