焦 巍 彭 莉
长沙市妇幼保健院检验科,湖南长沙 410007
[摘要] 目的 观察real time PCR在血流感染病原体检测中的敏感性和特异性,并与常规血培养对比,探讨其临床应用价值。方法 以该院各临床科室收集的108份脓毒血症患者血液标本进行real time PCR检测,同时进行常规血培养,比较两种方法的特异性和敏感性。结果 108份标本当中,两种方法检测出12种病原微生物。Real time PCR共检测出阳性标本25份,阴性标本83份。其中与血培养共同阳性标本9份,共同阴性标本78份。两方法的一致性为80.6%。Real time PCR的阴性预测值是0.94,敏感性64%,特异性83%。16例标本real time PCR阳性而血培养阴性,5例标本血培养阳性而real time PCR阴性。同时,有2病标超出real time PCR的检测范围,而血培养阳性。此外,real time PCR无法检测光滑念珠菌。结论 real time PCR虽然能快速检测血液感染中病原微生物,但依然不能完全替代血培养。
教育期刊网 http://www.jyqkw.com
关键词 实时定量PCR;血流感染;血培养
[中图分类号] R4 [文献标识码] A [文章编号] 1674-0742(2014)05(c)-0031-02
[作者简介] 焦巍(1974.9-),男,辽宁鞍山人,本科,副主任技师。研究方向:病原体的快速诊断与防治。E-mail:471833499@qq.com。
对于脓毒血症患者而言,准确快速快速血流病原体,是指导抗生素治疗最有效的措施[1]。尽管经验性使用抗生素可及时挽救患者生命,但由于耐药菌逐年增多,因此对于抗生素疗效甚微的患者,有必要根据病原体的类型调整治疗手段[2]。传统诊断血流感染的方式是血培养,虽然目前全自动的仪器已经广泛应用与临床,但最终的培养结果往往是需要等待12~48 h。对于生长缓慢且营养需求复杂的病原体(如酵母菌)可能需要更长的时间。更为重要的是,若患者先前使用过抗生素,血培养的阳性率一般更低[3]。随着分子生物学技术的发展和应用,直接从血液标本中对细菌或真菌的核酸进行扩增是鉴定病原体感染的有效手段[4-5]。该研究2013年1—8月间通过荧光定量PCR检测血流感染患者中的病原体,并与常规血培养进行对比,旨在评价其在临床中的应用价值。
1 资料与方法
1.1 一般资料
该研究纳入的脓毒血症患者为该院各临床科室收治的患者90例,共获取标本108份。其中男52例,女38例,平均年龄(43.5±11.5)岁。其中60例患者(66.7%)来自ICU、麻醉科和肿瘤内科,其他30例(33.3%)来自内科和血液科。93例患者(86.1%)在采集血液时已经接受过抗菌素治疗。
1.2 研究方法
使用静脉穿刺术获取的血液样本同时进行BC和SF。其中血培养采用Becton Dickinson公司生产的Bactec 9120血培养仪,在37 ℃培养1~5 d,并根据相应方法分离并鉴定微生物。同时,将静脉穿刺得到的含有EDTA血液5 mL用于real time PCR分析。其步骤根据SeptiFast Lys、SeptiFast Prep和LightCycler SeptiFast试剂盒的操作进行。real time PCR仪器型号为LightCycler 2.0(Roche)。
1.3 结果分析
根据教育期刊网 http://www.jyqkw.com
参考文献提供的方法对微生物进行鉴定[6]。即,所有待检病原体通过识别软件识别特有的峰值,同时设立阳性对照。若对照为阳性,且待测标本无峰值时,结果判定为阴性。
1.4 分析指标
根据鉴定结果,计算real time PCR的灵敏度、特异性、阳性预测值(positive predictive values,PPV)、阴性预测值(negative predictive values,NPV),同时计算两种方法的一致性。
1.5 统计方法
采用SPSS 19.0软件处理数据,并根据real time PCR结果计算其灵敏度、特异性、PPV、NPV和一致性。
2 结果
2.1 临床标本中病原菌的分布情况
90例患者培养标本共分离获得12株致病菌。其中革兰阳性球菌6种,革兰阴性杆菌5种,真菌1种。常见的细菌包括金大肠杆菌,黄色葡萄球菌,粪肠球菌,铜绿假单胞菌等。
2.2 两种方法细菌检出率比较
108例血液样本中,两种方法均检测阴性79例,阳性7例。5例标本血培养阳性而real time PCR阴性。16例标本血培养阴性而real time PCR阳性。real time PCR与血培养的NPV是94%(78/83),敏感度是64%(9/14),特异度是83%(78/94)。在16例real time PCR阳性而血培养阴性标本中,包括埃希菌属6例,肠球菌属3例,肠杆菌属3例,假单胞菌2例,金黄色葡萄球菌2例。见表1。
2.3 Real time PCR假阴性情况
该本研究中,有5例患者real time PCR阴性,而血培养阳性,假阴性率为4.6%(5/108),3例分别为包括多杀性巴氏杆菌2例,解没食子酸链球菌1例。由于先前在real time PCR扩增列表中并未设定,因此未予以检出。另2例real time PCR阴性的细菌为光滑念珠菌。
3 讨论
由于real time PCR将PCR反应和检测一次性完成,大大降低了污染的可能性,因此在临床病原体中已经得到了广泛的应用[5,7]。但有关real time PCR用于血流感染中对病原微生物进行检测,并能否代替常规血培养,国内报道非常少。其该研究通过将临床上诊断为脓毒血症患者的血液,通过real time PCR和血培养进行比较,结果发现,real time PCR的敏感度性范围为0.60~0.95,特异性为0.74~0.93。与国外报道相比,该研究的敏感性相对较低,但特异性更高[8]。
该研究当中,real time PCR阳性,而血培养阴性标本占14.8%,与国外报道有所不同[9]。该研究当中,对血培养阴性的患者,对身体其他部位的标本(如呼吸道分泌物)也进行了real time PCR检测,其中有4例患者在这些部位检测出病原体。因此,real time PCR相对而言更能反映出患者体内真实的感染情况。此外,也有3例患者曾在数天前检测出DNA阳性,而血培养阴性。这肯能与抗生素使用有关,当然也不能排除患者体内仅存在这些病原体的DNA。有研究显示,血液中的细菌DNA与SIRS的发生以及脓毒血症之间可能存在一定关联,并且是ICU患者发生多器官功能衰竭的危险因素。因此,real time PCR不但可以用于未知病原体或其DNA的检测,同时也能为临床提供更为有价值的信息[10]。同时,该研究中,real time PCR的假阴性为4.6%。与国外研究接近[11]。但该研究的5例假阴性标本当中,3例是病原体未列入real time PCR扩增谱中,另2例是真菌感染。和国外研究相符[12],真菌也是real time PCR法检出现假阴性的重要难题。其原因可能是PCR反应的抑制或自我扩增效率低下,这可能与扩增本菌时选取的ITS区域过大有关[4]。
综上,real time PCR可快速、敏感地检测血流感染病原体,尤其是对于有抗生素治疗史的患者而言,real time PCR更加具有优势。尽管如此,real time PCR也具有一些不足:首先,real time PCR不像血培养一样,可以获得细菌耐药相关资料;其次,real time PCR也受其检测谱的限制,尤其是罕见病原体的检测。因此在临床应用时,常规细菌培养依然是real time PCR的重要补充。
教育期刊网 http://www.jyqkw.com
参考文献
[1] Chaidaroglou A, Manoli E, Marathias E, et al. Use of a multiplex polymerase chain reaction system for enhanced bloodstream pathogen detection in thoracic transplantation[J].J Heart Lung Transplant, 2013,32(7):707-713.
[2] Menezes LC, Rocchetti TT, Bauab KC, et al. Diagnosis by real-time polymerase chain reaction of pathogens and antimicrobial resistance genes in bone marrow transplant patients with bloodstream infections[J]. BMC Infect Dis, 2013,13:166.
[3] Loonen AJ, Bos MP, van Meerbergen B, et al. Comparison of pathogen DNA isolation methods from large volumes of whole blood to improve molecular diagnosis of bloodstream infections[J].PLoS One,2013,8(8):e72349.
[4] Horvath A, Peto Z, Urban E, et al. A novel, multiplex, real-time PCR-based approach for the detection of the commonly occurring pathogenic fungi and bacteria[J]. BMC Microbiol, 2013,13:300.
[5] Hansen WL, Beuving J, Bruggeman CA, et al. Molecular probes for diagnosis of clinically relevant bacterial infections in blood cultures[J].J Clin Microbiol, 2010,48(12):4432-4438.
[6] Lehmann LE, Hunfeld KP, Emrich T, et al. A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood samples[J].Med Microbiol Immunol, 2008,197(3):313-324.
[7] Hansen WL, Beuving J, Verbon A, et al. One-day workflow scheme for bacterial pathogen detection and antimicrobial resistance testing from blood cultures[J]. J Vis Exp, 2012,(65):3254.
[8] Wallet F, Nseir S, Baumann L, et al. Preliminary clinical study using a multiplex real-time PCR test for the detection of bacterial and fungal DNA directly in blood[J]. Clin Microbiol Infect, 2010,16(6):774-779.
[9] Maubon D, Hamidfar-Roy R, Courby S, et al. Therapeutic impact and diagnostic performance of multiplex PCR in patients with malignancies and suspected sepsis[J]. J Infect, 2010,61(4):335-342.
[10] Kubelova M, Sedlak K, Panev A, et al. Conflicting results of serological, PCR and microscopic methods clarify the various risk levels of canine babesiosis in Slovakia: a complex approach to Babesia canis diagnostics[J]. Vet Parasitol, 2013,191(3-4):353-357.
[11] Lehmann LE, Hunfeld KP, Steinbrucker M, et al. Improved detection of blood stream pathogens by real-time PCR in severe sepsis[J]. Intensive Care Med, 2010,36(1):49-56.
[12] Kasper DC, Altiok I, Mechtler TP, et al. Molecular detection of late-onset neonatal sepsis in premature infants using small blood volumes: proof-of-concept[J]. Neonatology, 2013,103(4):268-273.
(收稿日期:2014-02-16)