论文网
首页 理科毕业设计毕业正文

RMS5000产品可靠性信息管理系统设计

  • 投稿云界
  • 更新时间2015-09-16
  • 阅读量338次
  • 评分4
  • 73
  • 0

李志鹏 LI Zhi-peng;梁巍 LIANG Wei;马晓东 MA Xiao-dong

(河南许继仪表有限公司,许昌 461000)

(Xuji Metering Limited Company,Xuchang 461000,China)

摘要:RMS5000产品可靠性信息管理系统是一套基于产品可靠性设计理念的信息管理系统,该系统从可靠性设计流程标准化、潜在缺陷分析、可靠性应力分析、可靠性测试流程标准化、设计评审审核、经验数据累计等几方面为用户提供了一整套技术有效、管理科学的可靠性技术体系。该系统旨在规范可靠性设计和测试流程、提高可靠性设计效率和产品质量。本文通过图文相结合的方式向用户全面阐述了该系统的设计理念、设计架构、产品开组成以及技术特点。希望能通过本文的介绍,向大家展示一个基于可靠性的产品开发体系模型,给设计人员在产品可靠性设计方面提供更多的帮助。

Abstract: RMS5000 product reliability information management system is a set of information management system based on the reliability design theory of product, and the system can provide a set of reliability technology system with effective technology and scientific management from several aspects of the standardization of reliability design process, the analysis of potential defect, the analysis of reliability stress, the standardization of reliability testing process, design review audit and experience data accumulation. The system is designed to standardize the reliability design and test procedure and improve the reliability design efficiency and quality of products. This paper comprehensively expounds the design idea, design architecture, product composition and technical characteristics of the system to the users through the combination of graphics and text. The article hopes to show a product development system mode based on reliability and provide more help for the design personnel in product reliability design.

教育期刊网 http://www.jyqkw.com
关键词 :预计失效率;MTBF;可靠性预计;电能计量

Key words: the expected failure rate;MTBF;the reliability prediction;electric energy metering

中图分类号:TN948.61 文献标识码:A 文章编号:1006-4311(2015)19-0179-04

作者简介:李志鹏(1985-),男,河南长葛人,本科,助理工程师,研究方向为系统软件、通讯及测试技术;梁巍(1983-),男,河南上蔡人,本科,助理工程师,研究方向为用电采集市场技术支持;马晓东(1985-),男,河南许昌人,本科,工程师,研究方向为嵌入式软件开发。

0 引言

伴随着国家智能电网系统的升级改造,市场对电能计量产品的技术要求不断提高。许多新技术、新材料得到应用,电能计量产品的集成度越来越高,系统越来越复杂,这些也必将导致产品发生故障的概率越来越高,产品的可靠性越来越差。在电能计量行业,随着产品集成度和智能化的不断提高,传统的设计方法和设计理念已无法满足现代产品在可靠性方面的要求。从而迫使设计人员不得不从可靠性的需求角度重新思考新的设计方法和设计思路。正是基于以上因素考虑,河南许继仪表有限公司设计团队,经过深入的市场调研和需求分析,开发设计完成了RMS5000产品可靠性信息管理系统(以下简称可靠性信息管理系统)。

1 系统分析

1.1 需求分析

为了减少产品长期运行过程中的故障概率,提高产品可靠性。该公司设计团队结合实际情况,并经过长期的需求调研和分析,最终形成了可靠性信息管理系统的设计理念。

经过调研和分析我们得出,一个正确且高效的产品可靠性设计体系需要包含规范的设计流程控制、合理产品设计方法、科学的潜在缺陷分析机制以及严谨的测试方法和审核机制等。所以我们需要将上述关键因素有效地融入到系统中去,以求可以引导设计人员在产品开发过程中做正确的事和正确地做事。其次,在产品可靠性设计过程中,最经常应用的就是可靠性应力分析计算,它是可靠性设计的重要参考依据,所以在可靠性信息管理系统中,必须体现对元器件、模块、产品的应力分析计算功能,实现开发过程中各阶段失效率和MTBF[1]的计算与审核,并可进行独立于开发流程之外的单一元器件、模块或者产品的可靠性应力分析。再次,可靠性信息管理系统应体现对测试数据和历史经验的存储管理,一方面便于数据的追溯查询,另一方面为新产品设计提供数据支撑和经验依据。最终,我们为用户提供的是一套集数据管理、潜在缺陷分析、可靠性计算、测试数据管理、审核评审于一体的解决方案。

1.2 系统架构设计

可靠性信息管理系统基于VS2010开发平台和SQLServer2005数据库[3]进行设计开发,该系统主要划分为三层逻辑结构,分别为应用层、数据处理层和数据存储层。下面针对系统的逻辑架构进行简要说明:

应用层:应用层主要面向终端PC用户,该层向用户展示系统成熟的功能模块集合,主要包括信息库管理、项目管理、可靠性预计、测试管理、系统管理和个人信息;用户可通过应用层直接操作并感受系统功能,该层是实现人机互动的窗口。

数据处理层:数据处理层主要由Web应用程序组成,包括Web发布、数据交互处理和数据库接口类库,是该系统的主体组成部分,系统的所有功能操作都在数据处理层完成。

数据存储层:数据存储层以SQLServer2005数据库为载体进行数据存储过程处理和数据存储,为可靠性信息管理系统的使用提供强有力的数据支撑,它保存了大量的历史数据和经验数据,使系统数据具备了可追溯性,是系统正常运行的必要条件。

1.3 系统组成

RMS5000产品可靠性信息管理系统依据客户需求和实际操作需要,将系统划分为七大功能模块,分别为:信息库管理、故障处理、评审审核、开发流程管理、测试管理、可靠性预计、系统管理和个人信息,如图2,下面对八大功能模块做简要介绍:

①信息库管理:负责存储与可靠性相关的经验数据,为可靠性设计提供参考依据或者符合新需求的成熟产品和单元模块,并可进行潜在缺陷分析。主要分为资料信息库、产品信息库、模块信息库、元器件信息库和DFMEA信息库。

②故障处理:该功能模块主要用于搜集产品在测试、生产及应用阶段发现的问题,并对问题进行失效分析,从而帮助设计人员找到最佳解决方案。该功能模块的故障处理子功能和故障验证测试子功能的实现可通过开发流程管理模块和测试管理模块实现,此处不再详细介绍。

③评审审核:该功能模块为本系统的统一审核接口,所有设计阶段和测试阶段的流程审核都在此功能模块呈现并完成,该功能模块权限只对行政主管和技术主管开放,具有高级权限。主要包括项目立项审核、产品组成审核、模块审核、产品结果审核、测试申请审核、测试方案审核、测试报告审核。

④项目管理:该部分向用户清晰地展示了整个产品的可靠性设计流程,并对设计流程进行了有效的控制和规范,为用户提供基于可靠性设计原则的设计方法。其主要内容包括:自上而下的产品组成设计和自下而上的可靠性应力分析[4],在用户进行产品设计过程中。系统会引导用户对产品组成设计的每一个阶段进行可靠性目标确立,同时会对每一个阶段的产品组成和可靠性预计结果进行审核,只有当审核通过时,才能进行下一个阶段的工作。该部分可最终输出模块设计主体信息报表、模块设计详细可靠性数据报表、产品设计主体信息报表和产品设计详细可靠性数据报表。

⑤测试管理:该部分包括一个测试流程管理和一个测试资料信息库,在测试流程管理中,只有当关键流程节点审核通过后,才可进行测试流程中的下一步工作。测试资料信息库主要负责可靠性测试方案、测试记录和测试结果的管理与查询,可实现上述文档的上传、下载、在线浏览和删除操作。该模块相当于可靠性测试经验数据库,是经过所有设计项目经过测试流程层层审核和实际验证之后累计而成的。

⑥可靠性预计[5]:该模块为独立的可靠性计算工具,可进行独立的元器件可靠性预计、模块可靠性预计和产品可靠性预计,它依托系统数据库内部强大的元器件应力系数,根据元器件种类的不同和实际的市场需求,挑选出符合要求的元器件应力系数,再依据元器件应力分析法预计出元器件的可靠性。单一模块的可靠性预计可根据已计算出的元器件预计结果套用可靠性预计模型得出,产品的可靠性预计与模块可靠性预计类似。将产品内所有模块的预计结果代入可靠性预计模型计算得出。

⑦系统管理:主要包括角色管理和用户管理两部分功能,为系统用户提供权限分配,为系统常用的功能管理模块,其中角色管理中包含页面访问权限管理和操作权限管理功能。用户可根据实际需要关联相关角色,一个角色可对应多个用户。

⑧个人信息:主要反映当前登录用户的个人信息,包括个人信息浏览、系统提醒和修改密码三部分。

2 关键技术及实现

2.1 强大的元器件应力分析参数库

元器件应力分析参数库为本系统的可靠性应力分析计算提供了基础运算参数。本系统依据《GJBZ 299C-2006电子设备可靠性预计手册》,将涉及到的所有元器件的应力分析系数全部录入到本系统的数据库中,形成了强大的元器件可靠性参数库,系统内部又融入不同类型的元器件可靠性计算公式,在进行可靠性计算时,可根据不同的元器件类型,将不同的可靠性失效率系数代入到相应的元器件可靠性计算公式中,从而计算出不同类型的元器件失效率,并依据已得到的失效率λ,运用MTBF=1/λ[6]计算公式得到元器件的MTBF。在本系统中,除元器件应力分析之外的上层对象(单元模块和产品)失效率则是在已知的元器件失效率基础上进行二次计算和三次计算得到的。例如:单元模块可靠性计算中,单元模块失效率就是将模块内部所有元器件失效率进行二次相加得到的,系统通过这一计算方法,计算出单元模块失效率,并依据单元模块失效率,计算出单元模块的MTBF,产品的失效率和MTBF亦是通过这种方式得到。所以元器件应力分析参数库是系统内部所有对象进行应力分析的基础。它为本系统的可靠性计算提供了参数支撑和有效保障。

2.2 经验与成果的重复利用

在产品的可靠性设计过程中,随着时间的推移,经过验证的成熟产品或者单元模块的数量会不断增加,经验数据也会不断累计。针对到这一情况,系统专门设计了数据管理模块,用来累计成熟的产品数据、单元模块数据和历史经验数据等,数据管理模块的主要作用可分为两部分:一是管理和存储成熟的设计对象(包括产品、单元模块),以便在以后的设计过程中,可直接引用满足新需求的产品或者单元模块,通过这种设计成果再利用的方式达到提高设计效率、节约设计资源的目的。二是经验数据的再利用,系统通过不断累计产品设计过程中的可靠性经验资料和DFMEA数据,丰富可靠性参考数据,为设计人员在设计开发工作中提供有力的数据支撑和参考资料,有利于用户提高设计质量,扩展设计思路,更有利于设计员有效地避免之前的设计缺陷。达到设计更优的目的。

2.3 信息提醒审核机制

本系统运用消息提醒机制处理用户之间的信息交流,使信息交流快速高效。该技术目前主要应用于产品设计阶段的审核信息传递中,在信息传递过程中,系统通过信息推送的方式将审核信息提交给相关审核人,审核人登录系统后可第一时间看到提醒信息,并及时处理。该消息提醒机制的工作原理是:信息发送方将信息内容、审核人ID、信息状态以提交审核的方式存入数据库表格中,在信息审核方,审核人登录信息后可根据自己的用户ID和指定的信息状态实时扫描该数据库表格信息并提取相关信息查看和处理,整个信息处理流程以数据库为传递中枢,保证了数据传递的安全性。审核方对信息的实时扫描和提取,也有效保证了信息的及时流动和处理。

3 应用数据分析

使用RMS5000产品可靠性信息管理系统预计出的智能电能表的CPU及部分辅助单元的可靠性失效率,如表1所示。

CPU及部分辅助单元总共有6个元器件,其工作失效率等于6个元器件的工作失效率之和,即其失效率等于0.2756 ×10-6/h。

使用RMS5000产品可靠性信息管理系统前后,三相智能电能表故障类数据对比,如表2所示。

4 结论

伴随着国家智能电网[7]的不断推进,智能用电领域对产品可靠性的质量要求也越来越高,可靠性信息管理系统在可靠性设计和可靠性技术研究中的应用也会越来越广泛,随着产品可靠性设计理念的不断深入人心,关于可靠性的设计方法和设计思路也将得到不断扩展和持续更新,RMS5000产品可靠性信息管理系统在此背景下,将不断优化、丰富完善并积极迎合市场需求,期望为行业内的产品可靠性设计和技术研究做出自己的更大贡献!

教育期刊网 http://www.jyqkw.com
参考文献:

[1]金伟娅,张康达.可靠性工程[M].北京:化学工业出版社,2005:68-93.

[2]刘浩.DFMEA在通讯产品设计中的应用[J].中国高新技术企业,2010(22):78-80.

[3]王秀英.SQLServer2005实用教程[M].北京:北京交通大学出版社,2010(3).

[4] 张增照,潘勇.电子产品可靠性预计[M].北京:科学出版社,2007:93.

[5]张增照,潘勇.电子产品可靠性预计[M].北京:科学出版社,2007:84-121.

[6]张增照,潘勇.电子产品可靠性预计[M].北京:科学出版社,2007:29.

[7]张文亮,刘壮志等.智能电网的研究进展及发展趋势[J].电网技术,2009,13(7):1-11.