论文网
首页 理科毕业计算机毕业正文

数字信号处理实践型教学改革研究

  • 投稿
  • 更新时间2018-06-23
  • 阅读量165次
  • 评分0
  • 0
  • 0

  摘要以工程教育专业认证为背景,结合电子信息专业培养要求,以培养学生的创新实践综合能力为目标,提出基于实践型人才培养的教学改革思路。以优化教学内容为基础,采用多种教学方式为手段,激发学生兴趣,夯实理论基础,优选课程实验,提高学生实践和创新能力,建立多层次评价体系和反馈机制并持续改进,以达到教与学的最优化。


  关键词数字信号处理;教学改革;实验课程;MATLAB;工程教育专业认证


  中图分类号:G642.0文献标识码:B


  文章编号:1671-489X(2017)24-0156-03


  1引言


  工程教育專业认证是一种以培养目标和毕业出口要求为导向的合格性评价,是国际通行的工程教育质量保障制度,也是实现工程教育国际互认和工程师资格国际互认的重要基础。工程教育专业认证的核心就是要确保工科的专业毕业生达到行业认可的既定质量标准要求。目前,工科的教育实践重理论轻实践,重视知识学习而轻视开拓创新能力的培养,强调个人能力而忽视团队协作精神,缺乏解决复杂工程问题能力的培养。因此,有必要结合实践教学改革,解决学生培养中有待解决的问题。


  数字信号处理是目前电子信息专业的一门核心基础课,是信息类及相关专业人才培养的重点课程。无论是无线通信系统的发展,还是数字消费电子市场的发展,在人工智能、模式识别等诸多方面都离不开数字信号处理技术。因此,无论是对学生今后的就业,还是继续深造从事相关研究,学好数字信号处理这门课程都是至关重要的。通过本课程的学习,要使学生建立数字信号处理的基础理论知识体系,掌握常用的基本分析方法和分析工具,为从事通信和信息处理等方面工作和研究打下基础[1-3]。


  然而,本课程的理论性强,原理抽象复杂,公式及推导烦琐,令人感觉枯燥难懂,学生大多对这样的课程兴趣不高,课堂效率较低。对于这样一门理论性和实践性要求均较强的综合课程,如何有效地组织课堂教学内容并适当地增加实践环节,使学生打好理论基础的同时提高应用型技能,实现在做中学,是值得探讨和需要解决的关键问题。


  为此,本次实践型教学改革研究探索主要针对该课程的设置特点,参照培养目标、毕业要求和教学大纲,协调相关课程,积极进行教学内容改革,开发出既有利于夯实学生基础,又能提高学生解决实际问题能力的教学计划和课程教案。为提高课堂教学效率,采用多种教学方式相结合,使表现形式更加丰富、生动和直观,以此来吸引学生的学习注意力,激发学生的学习兴趣。根据课程内容和学生特点,在教案中制定具体方法步骤,增加个性化和前沿内容。同时,增加适当的专题报告,一方面作为教材内容的补充,另一方面有利于多样化教学。在此基础上扩大学生知识面,提高学生专业素养以及实践能力,培养学生分析问题和处理问题的能力。增加应用型和实例型作业,开发设计与教材相配套的练习题。教师结合承担的相关科研工作,向学生介绍该学科领域近年来取得的一些新成果、新进展及新技术,鼓励学生参与教师科研,以此培养学生的科研能力。此外,制订合理的考核计划以及考核内容,建立与之相适应的评价体系和反馈机制,全面检验学生学习和教师讲授效果,并持续改进以实现教与学的最优化。


  2教学设计改革探讨


  数字信号处理主要内容包括离散时间信号与系统的时域分析、频域分析,离散傅里叶变换,快速傅里叶变换,数字滤波器的设计,数字滤波器的结构和多采样率数字信号处理。通过该课程的学习,能够让学生掌握基本概念和基本分析方法,在此基础上建立数学模型,用于解决计算机信息处理的实际问题。长期以来,本课程的课堂教学形式主要采用板书式单一教学方式。教师板书推导、讲解,学生课堂上听教师讲,课后通过完成作业来巩固课堂学习的内容。在这种学习情境下,学生的时间和精力被繁杂的计算推导所占用,而未必能理解解题背后的正真意义。此次实践型教学改革探索的具体教学设计思路如下。


  通过协调相关课程,整合教学内容,拎主线、抓关键,去粗取精主要阐述离散系统、频谱分析及滤波的基本原理和方法,用实用、易懂的理论推导并讲解,通过实例对数字信号处理相关的基本原理和方法进行全面介绍,增加专题讲座和前沿动态介绍以及实用案例教学,从而使学生掌握离散系统和离散信号的基本特性,掌握离散信号各种变换、数字滤波的基本方法,掌握数字滤波器的设计以及数字滤波器的特点,并且能够灵活运用这些理论知识解决实际问题。


  丰富教学手段和方法在讲授过程中可采用启发式教学、讨论式教学、多媒体示范教学等方法,互相补充、扬长避短,激发学生兴趣,吸引学生主动学习。对于一些公式的推导,逻辑性和推理性强,如果采用多媒体教学的话,PPT翻新太快,学生来不及思考。因此,这部分内容采用板书,把握好学生节奏,逐步推理。对于难以接受的抽象概念,学生需要形象直观地认识。教师利用多媒体教学手段和仿真软件进行图形和动画展示,在提高学生兴趣的同时,使难以理解的内容通过形象化的界面给学生留下深刻印象。


  此外,在整个教学过程中,如果自始至终都由教师来讲,会比较枯燥,因此尝试选择一些较为简单的章节让学生来讲解。学生通过准备和制作课件,加深对理论知识的了解,激发学习的兴趣,也培养了表达能力。教师在此基础上对学生所讲的内容进行点评并补充。这样一方面会调动学生的积极性,充分做好预习工作;另一方面,自己的同伴当小老师对于学生来说是新奇的,更容易激发学习兴趣。


  实验与教学相互补充、相辅相成对于一些基础性、验证性实验可以穿插在教学过程中进行,以多媒体的方式展现,这样既可以加深学生对理论知识的理解,又能节省实验课时,腾出时间增加一些设计性、综合性实验,培养学生灵活应用所学知识解决实际问题的能力,以适应实践型需求;设计一些复杂性的工程问题,通过学生组队完成,不仅可以提高学生解决问题的能力,而且能够培养学生的团队合作能力。


  合理布置作业与充分利用第二课堂合理布置作业,注重完成效果,安排时间进行课外答疑与辅导工作。通过组织学生参加实践活动,参与学术水平较高、实践经验丰富的专业教师的研究課题,培养学生综合运用所学知识解决实际问题的能力和创新精神;充分利用课后时间调动学生自主学习,跟踪分析完成情况,并反馈到教学中。


  3实验课程改革探索


  数字信号处理实验课程是对课堂教学的补充和提升。目的是通过各类实验,加深学生对课堂所学理论知识的理解,通过案例,编写MATLAB程序来解决信号分析和处理问题。之前所设置的实验都是简单单一的实验项目,很难让学生将理论很好地联系到实际应用中,因此非常有必要对实验模式进行改革,建设综合实验体系。根据该课程的内容特点和教学目的,科学合理地设置实验项目,制订基础型、提高型、研究型三层次的实验教学方案[4-5]。


  基础型实验主要是一些验证性实验,包括时域离散信号和系统时域分析、时域离散信号和系统频域分析、离散傅里叶变换、快速傅里叶变换。每个实验对应课程的一部分基础理论内容,主要用于巩固和理解数字信号处理基础理论,用以帮助学生加深对知识点的理解,明确具体的实验过程,这些可以在学生预习环节完成。


  提高型实验包括数字滤波器设计实验,有IIR数字滤波器设计、FIR数字滤波器设计等。这些具体的信号处理实例能够加强学生对滤波器基本理论的理解和实践能力,这部分内容作为课堂验证实验。


  基于项目的研究型实验设计有一定的开放性,能够让学生对各个知识点都融会贯通,又能提高工程实践能力和团队合作精神,为以后就业从事相关的工作做好准备。这类实验主要由教师课后指导,学生组队完成。


  实验考核方式也做了相应调整,分别是基本实验和综合能力两部分。基本实验又基于实验过程和实验结果两个方面进行评分:每次实验结束前以提问的方式对实验过程的关键要点进行考核,依据回答情况给出实验过程得分;在实验结束后,学生需完成实验报告,分为预习报告和实验报告,依据实验报告的撰写情况给出实验结果考核分数。


  综合能力考核用于考查学生综合应用该课程知识与方法的能力,通过项目设计和小论文两方面进行考核。依据设计的项目和提交小论文的原创性、新颖性和现实意义等给出综合能力分。


  按照以上实验课程改革思路实施教学改革,既可以加深学生对基础知识的掌握和巩固,又能培养学生对所学知识的综合应用能力,使学生更加直观地领会常用的基本分析、设计方法和处理结果,有利于调动学生的学习积极性和兴趣,提高解决复杂工程问题的能力,培养适应社会需求的实践型人才。


  4多层次的考核激励与持续改进机制的建立


  为提高学生的综合素质和实际应用能力,培养创新精神,应同时建立相应的多环节综合考核评价机制,全面检查学生各方面综合能力。改革本门课程原有笔试为主的考核方式,增加出勤成绩、作业成绩、实验成绩组成,综合表现、第二课堂评价成绩等,采用多层次评价以体现学生的综合素质。同时,建立评价体系和反馈机制,将阶段性效果反馈至教学中,对教师的授课内容、授课方式、实验内容以及综合设计等进行不断总结和调整,逐步实现教与学的最优化。


  5结语


  针对工程认证背景下数字信号处理课程教学过程中存在的问题与不足,提出基于实践的教学改革思路。此改革探索以理论为基础,优化实践与考核方式,注重培养学生的应用能力、团队合作能力及系统工程能力。这种教学改革模式将理论学习与实践训练相结合,有利于培养学生独立思考、分析问题与解决问题的能力,加强合作和沟通技巧,促进综合实践与创新能力,有助于高层次工程技术人才的培养。


   参考文献 

  [1]熊美英,谢水珍.《数字信号处理》课程教学改革研究[J].科技资讯,2016,14(27):70. 

  [2]沈希忠.数字信号处理课程的应用型教学模式探索[J].高教学刊,2016(22):98-99. 

  [3]陈俊杰,周晖.数字信号处理课程教学改革初探[J].中国教育技术装备,2016(12):99-100. 

  [4]何朝霞.数字信号处理实验教学改革的探索[J].实验室科学,2015,18(3):103-105. 

  [5]江朝抒,陈祝明,段锐.面向工程设计的数字信号处理实验系统[J].实验科学与技术,2015,13(5):35-37. 

    作者:李洪均等