论文网
首页 医学护理中医学正文

中医药干预帕金森病相关信号通路研究进展

  • 投稿
  • 更新时间2022-08-15
  • 阅读量64次
  • 评分0

摘    要:

中医药防治帕金森病临床疗效较好,大量药理学研究亦证实中药活性成分及中药复方主要通过调控帕金森病核转录因子-κB(nuclear transcription factor-κB,NF-κB)、丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPKs)、磷酯酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)/蛋白激酶B(protein kinase B,Akt)、NF-E2相关因子2(Nf-E2 related factor-2,Nrf2)/抗氧化反应元件(antioxidant response element, ARE)、Wnt/β-catenin等多条信号通路发挥治疗作用,可明显改善帕金森病氧化应激、神经炎症及多巴胺能神经元的凋亡。深入研究中医药干预信号转导途径在帕金森病中的作用机制,研制出有效的抗帕金森病药物可作为今后的研究重点。但目前中医药抗帕金森病的相关研究仍存在一些问题:总体研究数量比较少;大规模、高质量的临床研究不足,纳入病例的样本量偏小,证据的可靠性不足;研究多集中于中药单体成分及衍生物,缺乏单味中药和中药复方研究;中医辨证论治、组药配方的特色不足。故今后需进一步利用生物信息学、网络药理学和高效液相等技术探究中药复杂成分的作用机制,将中医学与现代医学相结合,将体内与体外联合分析,将基础与临床研究相结合,探究中药复方内在配伍规律,阐明各通路之间的内在关联,不断推动中医药防治帕金森病研究的发展进步。


关键词:帕金森病;信号通路;作用机制;中医药; MAPKs; NF-KB; PI3K/Akt; Nrf2/ARE; Wnt/B-catenin;


Research Review on TCM Regulating Parkinson's Disease Related Signaling

Pathways

FAN Mingdong HUANG Sen WANG Qiao

TAN Rui MA Jianfu CHEN Zhuo LI Yan WANG

Yali

Shaanxi University of Chinese Medicine

Guangyuan Central Hospital


Abstract:

Traditional Chinese medicine has a good clinical effect in the prevention and treatment of Parkinson′s disease.A large number of pharmacological studies have also confirmed that the active ingredients of traditional Chinese medicine and traditional Chinese medicine compounds mainly regulate Parkinson′s disease nuclear transcription factor-κB(NF-κB),mitosis mitogen-activated protein kinases(MAPKs),phosphatidylinositol 3-kinase(PI3 K)/protein kinase B(Akt),NF-E2-related factor 2(Nf-E2 related factor-2,Nrf2)/antioxidant response element(ARE),Wnt/β-catenin and other signaling pathways play a therapeutic role, which can significantly improve Parkinson′s disease oxidative stress, neuroinflammation and dopamine Apoptosis of neurons.Further research on the mechanism of TCM intervention signal transduction pathway in Parkinson′s disease and the development of effective anti-Parkinson′s disease drugs can be the focus of future research.However, there are some problems in the current research on anti-Parkinson′s disease of traditional Chinese medicine: the overall number of studies is relatively small; large-scale and high-quality clinical research is insufficient, and the sample size of the included cases is too small, and the reliability of the evidence is insufficient; In terms of body components and derivatives, there is a lack of research on single Chinese medicines and Chinese medicine compound prescriptions; Chinese medicine is based on syndrome differentiation and treatment, and the characteristics of group medicines are insufficient.Therefore, in the future, it is necessary to further use technologies such as bioinformatics, network pharmacology and high performance liquid phase to explore the mechanism of action of complex components of traditional Chinese medicine, to combine traditional Chinese medicine with modern medicine, to combine in vivo and in vitro analysis, and to combine basic and clinical research in exploring the internal compatibility rules of traditional Chinese medicine compounds, clarifying the internal relationship between pathways, and constantly promoting the development and progress of traditional Chinese medicine research on the prevention and treatment of Parkinson′s disease.


Keyword:

Parkinson′s disease; signaling pathway; mechanism of action; traditional Chinese medicine; MAPKs; NF-κB; PI3K/Akt; Nrf2/ARE; Wnt/β-catenin;


帕金森病(Parkinson′s disease, PD)是一种常见于中老年人的神经系统退行性疾病,为医学界亟待攻克的疑难病之一,主要表现为黑质多巴胺能神经元于早期明显缺失,致基底节区多巴胺缺乏,是以运动症状及非运动症状为主要特征的疾病[1]。在世界范围内,该病发病率为0.3%,在80岁以上人群中,发病率达到3%,发病率随年龄的增长而升高[2]。帕金森病的药物治疗主要是通过使用增加多巴胺浓度或直接刺激多巴胺受体的药物对症治疗,然而其疗效并不理想,且随着疾病的进展和长期服药,会产生运动并发症,增加嗜睡和精神不良反应发生的风险。近年来,中医药辨证论治帕金森病疗效显著,已被诸多临床实践证实,受到了越来越多的关注。中医药治疗帕金森病具有多靶点效应,深入发掘该病的分子生物机制,可为中医药干预提供更多有效的方案。近年来,中医药干预帕金森病作用机制的研究日渐增多,但总结中医药干预对帕金森病相关信号通路的影响较少,本文就此问题进行综述。


1 中医药对帕金森病的认识

中医学中无帕金森病的病名,根据该病的临床表现可将其归属于“颤振”“颤证”“颤病”等范畴。相关记载可追溯至《黄帝内经》。《素问·至真要大论》载:“诸风掉眩,皆属于肝。”《素问·脉要精微论》载:“骨者……行则振掉,骨将惫矣。”《素问·五常政大论》中记载有“其病摇动”“掉眩巅疾”,所谓“掉”“振”“摇”,即震颤之意。明代王肯堂《证治准绳》所载:“颤,摇也;振,动也。筋脉约束不住而莫能任持……皆木气太过而兼火之化也”,明确提出“颤振”病名,并指出本病与肝阳化风、筋脉失约有关。现代医家多认为该病的病因病机为肝肾阴虚及气血亏虚,加之风火痰瘀内阻;病位在筋脉,与肝、脾、肾三脏关系密切;病性属本虚标实,气血阴阳亏虚、脏腑功能受损为发病之本,风火痰瘀为发病之标,久之则成虚实夹杂之证[3,4,5,6,7,8]。大量研究证明,帕金森病的发生与患者体内异常的信号通路表达密切相关,调控相关信号通路是有效防治帕金森病的重要作用基础,本文就相关信号通路进行归纳总结。


2 中医药调控帕金森病相关信号通路

2.1 核转录因子-κB(nuclear transcription factor-κB,NF-κB)信号通路

NF-κB蛋白家族由RelA 、RelB、c-Rel、NF-κB1及NF-κB2 共5个成员组成。NF-κB信号通路是配体与其受体结合,最终激活κB抑制蛋白激酶(inhibitor of nuclear factorκB kinase, IKK)复合物(IKK、IKKb和IKKg),进而导致NF-κB抑制蛋白(inhibitor of NF-κB,IκB)的磷酸化,释放NF-κB p50/RelA二聚体。活化的NF-κB p50/RelA二聚体可单独或与其他转录因子组合后转移至细胞核,将下游DNA转录成mRNA,诱导蛋白质的合成[9],该通路可通过多种生物学机制调节机体免疫应答、炎症及细胞凋亡等生理、病理反应。


陈宝鑫等[10]研究发现,以健脾益肾通络方治疗1-甲基-4-苯基-1,2,3,6-四氢吡啶(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin, MPTP)诱导的帕金森病小鼠,可明显延长其爬杆时间,改善运动迟缓症状,降低小鼠脑组织NF-κB水平和半胱天冬氨酸蛋白酶-3(cysteinyl aspartate specific proteinase-3,caspase-3)蛋白表达量,降低帕金森病小鼠纹状体内肿瘤坏死因子(tumour necrosis factor, TNF)、白细胞介素-1β(interleukin-1β,IL-1β)、白细胞介素-6(interleukin-6,IL-6)等炎症因子水平,缓解炎症反应与细胞凋亡,表明健脾益肾通络方可通过降低组织NF-κB及caspase-3蛋白含量的表达,从而达到延缓帕金森病发生发展的作用。周瑞等[11]通过实验研究红景天苷对百草枯所诱导的帕金森病小鼠的神经保护作用及其机制,结果显示,红景天苷可改善帕金森病小鼠的运动协调能力,各剂量组小鼠大脑皮质内IL-1β、IL-6、TNF-α 含量均明显降低,同时观察到小鼠大脑皮质中NF-κB(p65)蛋白表达水平降低,表明红景天苷的神经保护作用可能是通过调节NF-κB信号转导途径实现的。Yu等[12]通过实验研究发现,姜黄素可降低MPP+诱导星型胶质细胞内NF-κB和IRF3 mRNA及其磷酸化水平,降低NF-κB的表达,表明姜黄素可能通过介导NF-κB信号通路阻断其介导的下游炎症因子的表达,从而抑制炎性反应,达到防治帕金森病的目的。Cheng等[13]实验发现,虫草素可减低帕金森病大鼠小胶质细胞内TNF-α、IL-1β、IL-6和活性氧(reactive oxygen species, ROS)水平,减轻PC12的细胞毒作用,表明虫草素可通过干预Toll样受体(Toll-like receptors, TLR)/NF-κB信号途径发挥抗炎、抗氧化应激作用,从而达到抗帕金森病的目的。张二飞等[14]研究报道,白藜芦醇抑制了帕金森病细胞模型中TRL4/NF-κB/IL-1β蛋白的表达,推测其抗帕金森病的分子机制可能是通过干预NF-κB信号转导途径、抑制细胞凋亡实现的。


2.2 丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPKs)依赖性信号通路

MAPKs是细胞中一类丝氨酸蛋白激酶,参与调节增殖、分化、凋亡或存活、炎症和免疫活化等细胞活动[15]。研究显示,MAPKs家族包括c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)、p38MAPK和细胞外调节蛋白激酶(extracellular signal-regulated kinases, ERK)等多个亚族,调节增殖、分化、凋亡或存活、炎症和先天免疫等细胞活动[16]。另有研究显示,MAPKs信号通路的激活在神经退行性疾病、癌症等的发病中发挥关键作用。


陈清[17]研究发现,松果菊苷可干预介导ERK1/2/MAPK信号通路,调节p-ERK水平,抑制帕金森病神经元凋亡。松果菊苷可上调模型小鼠大脑黑质区胶质细胞源性神经营养因子(glial cell line-derived neurotrophicfactor, GDNF)、抗凋亡因子p-ERK1/2/ERK1/2水平,提示其具有缓解帕金森病神经元损伤的作用,抑制ERK/MAPK信号通路的活化可能是其作用机制之一。李港澳等[18]研究证实,脑血疏口服液可减轻帕金森病大鼠的旋转行为,减少小胶活化细胞数量和表达量,抑制小胶质细胞活性,同时显著降低帕金森病大鼠黑质p38MAPK、诱生型一氧化氮合酶(inducible nitric oxide synthase, iNOS)阳性细胞数量,降低p38MAPK、iNOS、p-p38MAPK蛋白表达量;iNOS可减少NO的产生,减少神经炎症因子的释放,表明脑血疏口服液抗帕金森病的机制可能是通过p38MAPK信号通路和降低炎症因子表达,抑制其下游调控的iNOS表达,最终减轻中脑黑质炎症反应实现的。徐玉英等[19]研究显示,丹参酮ⅡA可提高帕金森病大鼠中脑黑质内酪氨酸羟化酶(tyrosine hydroxylase, TH)水平,降低p-p38MAPK表达水平。Yang等[20]研究表明,毛蕊异黄酮对帕金森病大鼠脑组织中酪氨酸羟化酶、小胶质细胞标志物CD11b的表达水平有明显影响,减少了酪氨酸羟化酶和CD11b的表达,从而减轻多巴胺能神经元丢失,抑制小胶质细胞活性;同时还观察到,毛蕊异黄酮降低了大鼠TNF-1β、IL-1β和 IL-6 mRNA的表达水平,降低了p38MAPK、JNK和ERK的磷酸化水平,提示毛蕊异黄酮抗帕金森病的作用机制可能与其调控MAPK信号转导途径有关。Nataraj等[21]研究显示,积雪草提取物可有效控制帕金森病小鼠的运动功能异常,减少脑组织中多巴胺能神经元的消耗,减少神经营养因子(neurotrophic factor, NTFs)和酪氨酸激酶受体(tyrosine kinase receptor B,TrKB)的表达,同时抑制MAPK/p38相关蛋白p-p38MAPK、p-ERK、p-JNK的水平,表明积雪草提取物对MPTP诱导的帕金森病小鼠的神经保护作用可能是通过抑制JNK、ERK、p38MAPK介导的信号通路实现的。张大燕等[22]研究发现,天麻水煎液给药后,帕金森病转基因小鼠黑质中c-Fos、p38MAPK、MAPKAPK3等基因的表达水平下降,组学分析结果提示c-Fos、p38MAPK等基因可能是天麻抗帕金森病细胞凋亡的关键靶点。


2.3 磷酯酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)/蛋白激酶B(protein kinase B,Akt)信号通路

PI3K是脂质激酶家族的成员之一,能磷酸化肌醇磷脂中3-OH基团的肌醇环。Akt是一种丝氨酸/苏氨酸激酶,被认为是PI3K下游通路中最重要的效应激酶之一,是PI3K/Akt信号转导途径的核心。PI3K/Akt信号通路可被多种刺激因子激活,具有调节细胞的增殖、分化、凋亡以及迁移等生理功能[23,24]。研究发现,PI3K/Akt/m TOR信号通路抑制剂LY294002及雷帕霉素可阻断帕金森病大鼠PI3K/Akt/m TOR信号通路的表达过度,降低大鼠黑质区p-Akt、p-mTOR水平,表明PI3K/Akt/m TOR信号通路在帕金森病发病中发挥着重要作用,亦表明该信号转导途径可能是治疗帕金森病的潜在靶点之一[25]。


胡聃等[26]通过实验研究表明,复方地黄颗粒可以剂量依赖方式降低帕金森病大鼠纹状体细胞凋亡指数,同时升高大鼠纹状体PI3K、p-Akt蛋白水平,说明复方地黄颗粒可作用于PI3K/Akt信号转导通路,具有较强的抗帕金森病特性。林瑶等[27]研究显示,肉苁蓉干预可改善鱼藤酮葵花油乳化液诱导的帕金森病模型大鼠行为障碍症状,上调黑质纹状体PI3K、Akt、B细胞淋巴瘤基因-2(B-cell lymphoma-2,Bcl-2)蛋白表达,降低Bcl-2相关X蛋白(Bcl-2 assaciated X protein, Bax)蛋白表达,Bcl-2/Bax比值升高,说明肉苁蓉可通过PI3K/Akt途径抑制神经细胞凋亡,发挥抗帕金森病的神经保护作用。陈红利等[28]建立MPP+诱导的帕金森病细胞损伤模型,并予黄连碱进行干预,结果显示黄连碱可提高细胞存活率、p-AKT、p-PI3K蛋白表达水平,显著降低活化caspase-3表达水平和细胞凋亡率,表明黄连碱可通过PI3K/Akt通路促进细胞存活,对抗MPP+诱导的细胞凋亡,发挥抗帕金森病作用。Jiang等[29]通过实验建立MPP+诱导的帕金森病细胞模型,并给予不同剂量的地黄汤进行干预,结果表明地黄汤可减少帕金森病模型细胞凋亡率,降低细胞内caspase-12表达水平,并以浓度依赖性的方式提高细胞中PI3K、Akt和mTOR的磷酸化水平,推测地黄汤调控帕金森病的分子机制与干预PI3K/Akt信号转导途径有关。李鹏等[30]研究证实,枸杞多糖对MPP+介导体外培养的PC12细胞PI3K/Akt通路相关蛋白及细胞凋亡有抑制作用,并能提高神经元的存活水平。


2.4 NF-E2相关因子2(Nf-E2 related factor-2,Nrf2)/抗氧化反应元件(antioxidant response element, ARE)信号通路

Nrf2属于碱性亮氨酸拉链家族转录因子,是一种氧化还原调节的转录因子[31],其激活可参与机体和细胞的抗氧化防御反应,对于维持机体氧化还原稳态平衡具有重要意义[32]。Nrf2可通过与Nrf2靶基因调控区中的ARE结合,调节多种抗氧化酶和蛋白的表达,保护细胞功能。多项研究表明,帕金森病的发生与Nrf2及其调控的下游因子的表达异常相关[33,34],而通过干预Nrf2/ARE途径、激活Nrf2活性可改善帕金森病所致神经元损伤[35]。


Guo等[36]研究表明,原儿茶醛可明显改善帕金森病模型小鼠行为障碍,减少小鼠黑质区的α-突触核蛋白积累,显著增加TH、PLK2、磷酸化糖原合成酶激酶-3β(p-glycogen synthase kinase 3β,p-GSK3β)和Nrf2表达水平;同时,体外实验发现,原儿茶醛减少了MPP+诱导的帕金森病细胞模型中ROS、α-Syn的产生,增加PLK2、p-GSK3β和Nrf2的表达水平。以上研究均表明,原儿茶醛可能通过干预Nrf2信号通路保护神经功能。张辉等[37]研究发现,银杏叶提取物可使帕金森病模型大鼠的帕金森样症状明显改善,提高帕金森病大鼠中脑TH、Nrf2及其下游产物血红素氧合酶-1(heme oxygenase-1,HO-1)蛋白表达,降低大鼠纹状体丙二醛、还原型谷胱甘肽含量,证实银杏叶提取物可通过激活Nrf2-ARE抗氧化通路,诱导Nrf2及其下游产物HO-1高表达从而保护脑内黑质多巴胺能神经元。Huang等[38]利用Western blot法测定帕金森病细胞模型中细胞核内Nrf2蛋白、Bax和Bcl-2、cytochrome C、caspase-3及Nrf2下游因子HO-1蛋白和p-HO-1的表达水平,Bcl-2、cytochrome C、caspase-3在天麻提取物的诱导下表达降低,而细胞核内Nrf2蛋白、Bax、HO-1蛋白和mRNA表达水平明显上升,证明天麻提取物能够减轻细胞凋亡,其机制可能与激活Nrf2信号通路及其下游靶基因有关。赵燕芬等[39]研究显示,石参提取物可提高鱼藤酮帕金森病细胞模型内Nrf2细胞核蛋白、HO-1,蛋白表达量,增强Nrf2/HO-1信号通路的活性来发挥抗帕金森病作用。孙平鸽等[40]通过实验探究黄芩苷对帕金森病模型大鼠黑质神经元的影响,结果表明黄芩苷可通过激活Nrf2信号转导途径对抗帕金森病大鼠黑质多巴胺能神经元的氧化应激性损伤。孙冰等[41]研究发现,氧化苦参碱可通过调控Nrf2/ARE信号转导通路,降低帕金森病小鼠脑组织中Keap1蛋白表达水平,升高Nrf2、ARE蛋白表达,发挥抗帕金森病效应。


2.5 Wnt/β-catenin信号通路

Wnt信号通路以Wnt/β-catenin为核心,Wnt/β-catenin信号通路被称经典通路[42]。β-catenin和GSK-3β是Wnt/β-catenin信号通路的重要分子[43],该信号通路的激活以β-catenin为核心,可使GSK-3β活性降低,并阻止其使β-catenin磷酸化,从而稳定细胞质中的β-catenin水平,继而提高多巴胺能神经元的存活数量和分化能力。因此,Wnt信号转导途径在神经发生和突触可塑性调节中的作用对于维持和保护神经元连接具有重要意义。研究表明,在帕金森病动物模型中,神经元凋亡与β-catenin 表达水平降低及 GSK-3β活性升高密切相关,实验通过药物干预可增加β-catenin 蛋白水平,激活 Wnt/β-catenin 信号传导途径,发挥抗帕金森病作用。


尹帅领等[44]研究报道,肉苁蓉多糖能改善6-羟多巴胺所致帕金森病大鼠模型的临床症状,上调大鼠黑质区域中Wnt1、β-catenin蛋白水平,下调p-GSK-3β的表达,揭示了肉苁蓉多糖通过介导Wnt/β-catenin信号途径发挥多巴胺神经保护作用的分子机制。Cao等[45]研究桑皮素干预帕金森病小鼠的分子机制,发现桑皮素可明显改善帕金森病小鼠的行为障碍,减轻MPTP诱导的神经元丢失,抑制大脑中小胶质细胞活性;体外实验发现,桑皮素可降低帕金森病模型中Wnt、β-catenin以及下游因子c-myc的水平,提示桑皮素是基于 Wnt/β-catenin 信号转导通路介导帕金森病治疗的。Wang等[46]研究报道姜黄素可通过激活Wnt/β-catenin信号通路减少帕金森病大鼠大脑中Wnt3a、β-catenin 蛋白表达量磷酸化水平以及c-myc和cyclinD1 磷酸化水平,说明姜黄素可基于Wnt/β-catenin途径改善帕金森病大鼠的氧化应激反应。肖绍坚等[47]研究报道复方苁蓉精水提液可改善帕金森病大鼠的活动障碍,同时利用PCR检测大鼠黑质部位GSK-3β表达情况,结果证明复方苁蓉精水提液抗帕金森病分子机制可能与介导Wnt信号转导途径有关。有研究报道,复方地黄方可通过调控GSK-3β信号通路介导下游凋亡因子,发挥抗帕金森病及异动症的作用[48]。


综上,中医药调控帕金森病相关信号通路可明显改善帕金森病氧化应激、神经炎症及多巴胺能神经元的凋亡,值得临床采纳推广。中医药对帕金森病相关信号通路的调控及检测指标见表1。


3 总结与展望

综上所述,中医药对于帕金森病的调控具有独特价值,可针对该病发病过程中的多个信号转导通路进行有效干预,涉及MAPKs、NF-κB、PI3K/Akt、Nrf2/ARE、Wnt/β-catenin等多个信号通路。目前,通过对以上信号转导通路的研究,对于帕金森病的分子作用机制及相关治疗靶点已经有了更加深入的认识。本文参考近年来国内外相关研究,对以上5条信号通路进行了总结,可为后续开展大规模的中医药研究提供一些参考。


帕金森病是老年人中最为常见的神经退行性疾病之一,该病发病机制复杂,涉及多种生理病理过程,病程较长,难以治愈。中药有效成分、单味中药、中药复方具有多途径、多环节、多靶点、毒副作用小等特点,对于帕金森病运动症状和非运动症状的控制以及延缓疾病进展具有独特优势,已成为帕金森病研究领域的热点[49]。


因此,深入研究中医药干预信号转导途径在帕金森病中的作用机制,研制出有效的抗帕金森病药物是日后的研究重点。然而当前国内外在中医药抗帕金森病的研究中还存在一些问题:①总体研究数量比较少;②大规模、高质量的临床研究不足,纳入病例的样本偏小,证据可靠性不足;③多数研究集中于中药单体成分及衍生物上,对单味中药和中药复方研究较少;④中医辨证论治、组药配方的特色不足。未来需进一步结合中医药理论与帕金森病现代医学研究并利用新的科研方法,借助生物信息学、网络药理学和高效液相等技术深入探究中药复杂成分的作用机制,将中医学与现代医学相结合,完善中医药调控帕金森病信号通路的内在机制研究,为临床干预提供更加充足的理论依据;将体内与体外联合分析,从宏观与微观层面共同观察中医药疗效;将基础与临床研究相结合,探究中药复方的内在配伍规律,阐明各通路之间的内在关联,开展大样本、多中心的临床试验,不断推动中医药防治帕金森病研究的发展进步。


参考文献

[1] KALIA L V,LANG A E.Parkinson′s disease[J].Lancet,2015,386(9996):896-912.

[2] DEXTER D T,JENNER P.Parkinson disease:from pathology to molecular disease mechanisms[J].Free Radic Biol Med,2013,62:132-144.

[3] 吴大龙,覃祥云,赵婧彤,等.基于脑髓理论探讨帕金森病[J].中华中医药杂志,2020,35(1):336-338.WU D L,QIN X Y,ZHAO J T,et al.Discussion on Parkinson′s disease based on brain marrow theory[J].China J Tradit Chin Med Pharm,2020,35(1):336-338.

[4] 孙明广,王芳,王冬慧,等.王永炎院士诊治帕金森病学术思想探析[J].现代中医临床,2019,26(1):34-37.SUN M G,WANG F,WANG D H,et al.Academic thoughts of academician Wang Yongyan for diagnosing and treatment of Parkinson′s disease[J].Mod Chin Clin Med,2019,26(1):34-37.

[5] 徐鹏恒,夏菁,王利.何建成分阶段治疗帕金森病的思路与方法[J].中医文献杂志,2018,36(5):39-42.XU P H,XIA J,WANG L.He Jiancheng′s ideas and methods on divided stages treatment to Parkinson′s disease[J].J Tradit Chin Med Lit,2018,36(5):39-42.

[6] 汤银芳,马云枝,黄艳丽,等.马云枝治疗帕金森病学术思想与经验[J].中华中医药杂志,2021,36(2):854-856.TANG Y F,MA Y Z,HUANG Y L,et al.Ma Yunzhi′s academic thoughts and experience in treating Parkinson′s disease[J].China J Tradit Chin Med Pharm,2021,36(2):854-856.

[7] 程婷,郝文杰,李祥,等.杨文明治疗帕金森病经验[J].中国中医药信息杂志,2020,27(2):107-109.CHENG T,HAO W J,LI X,et al.Experience of Yang Wenming in treating parkinson disease[J].Chin J Inf Tradit Chin Med,2020,27(2):107-109.

[8] 高娜娜,孙文竹,任渊,等.杨震从“肾寒脾湿木郁风动”论治帕金森病[J].中医药导报,2020,26(9):195-197.GAO N N,SUN W Z,REN Y,et al.Yang Zhen′s treatment of Parkinson′s disease from perspective of "Kidney cold and Spleen dampness causing Wood stagnation and Wind[J].Guid J Tradit Chin Med Pharm,2020,26(9):195-197.

[9] CILDIR G,LOW K C,TERGAONKAR V.Noncanonical NF-κB signaling in health and disease[J].Trends Mol Med,2016,22(5):414-429.

[10] 陈宝鑫,赵世娇,金香兰,等.健脾益肾通络方对MPTP诱导的帕金森病小鼠的保护作用及其机制[J].北京中医药,2019,38(7):631-634.CHEN B X,ZHAO S J,JIN X L,et al.Neuroprotective effect of Jianpi Yishen Tongluo Recipe on MPTP-induced Parkinson′s disease in mice and its mechanism[J].Beijing J Tradit Chin Med,2019,38(7):631-634.

[11] 周瑞,罗芬,刘静妍,等.红景天苷对小鼠帕金森模型的保护作用及机制[J].药学与临床研究,2017,25(3):179-182.ZHOU R,LUO F,LIU J Y,et al.Effects of salidroside in parkinson disease mice[J].Pharm Clin Res,2017,25(3):179-182.

[12] YU S,WANG X,HE X L,et al.Curcumin exerts anti-inflammatory and antioxidative properties in 1-methyl-4-phenylpyridinium ion (MPP<sup>+</sup>)-stimulated mesencephalic astrocytes by interference with TLR4 and downstream signaling pathway[J].Cell Stress Chaperones,2016,21(4):697-705.

[13] CHENG C Y,ZHU X Y.Cordycepin mitigates MPTP-induced Parkinson′s disease through inhibiting TLR/NF-κB signaling pathway[J].Life Sci,2019,223:120-127.

[14] 张二飞,殷紫,齐越.白藜芦醇改善帕金森病中小胶质细胞炎症诱发细胞凋亡的机制研究[J].中成药,2020,42(11):3052-3056.ZHANG E F,YIN Z,QI Y.Mechanism of resveratrol improving microglial inflammation-induced apoptosis in Parkinson′s disease[J].Chin Tradit Pat Med,2020,42(11):3052-3056.

[15] KIM E K,CHOI E J.Compromised MAPK signaling in human diseases:an update[J].Arch Toxicol,2015,89(6):867-882.

[16] 龚元勋.针刺对帕金森病模型大鼠脑内MAPKs信号通路及炎症反应的作用研究[D].武汉:湖北中医药大学,2014.GONG Y X.The study of the effect of electro-acupuncture on MAPKs signal pathway and inflammations in rat brain of PD model[D].Wuhan:Hubei University of Chinese Medicine,2014.

[17] 陈清.松果菊苷对MPTP亚急性帕金森病小鼠模型炎性损伤保护机制的研究[D].南京:南京中医药大学,2016.CHEN Q.Research of echinacoside on inflammation mechanism of MPTP subacute Parkinson′s disease mouse model[D].Nanjing:Nanjing University of Chinese Medicine,2016.

[18] 李港澳,李侃,陈超,等.脑血疏口服液通过p38MAPK通路抑制帕金森病大鼠黑质神经炎症反应[J].中国老年学杂志,2019,39(7):1662-1666.LI G G,LI K,CHEN C,et al.Naoxueshu Oral Liquid inhibiting neuroinflammation in substantia nigra of rats with Parkinson′s disease through p38MAPK pathway[J].Chin J Gerontol,2019,39(7):1662-1666.

[19] 徐玉英,彭普基,游言文,等.丹参酮ⅡA对帕金森病大鼠中脑黑质内磷酸化p38MAPK的影响[J].解剖学研究,2016,38(5):355-357,367.XU Y Y,PENG P J,YOU Y W,et al.Effects of Tanshinone ⅡA on expression of phosphorylated p38 MAPK in the substantia nigra in Parkinson disease rats[J].Anat Res,2016,38(5):355-357,367.

[20] YANG J,JIA M M,ZHANG X J,et al.Calycosin attenuates MPTP-induced Parkinson′s disease by suppressing the activation of TLR/NF-κB and MAPK pathways[J].Phytother Res,2019,33(2):309-318.

[21] NATARAJ J,MANIVASAGAM T,JUSTIN THENMOZHI A,et al.Neurotrophic effect of Asiatic acid,a triterpene of Centella asiatica against chronic 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine hydrochloride/probenecid mouse model of Parkinson′s disease:the role of MAPK,PI3K-Akt-GSK3β and mTOR signalling pathways[J].Neurochem Res,2017,42(5):1354-1365.

[22] 张大燕,文欢,王伟,等.天麻对帕金森小鼠神经元保护作用机制的转录组学分析[J].中国实验方剂学杂志,2018,24(16):73-81.ZHANG D Y,WEN H,WANG W,et al.Transcriptome analysis of protective mechanism of gastrodiae rhizoma on neurons of parkinson mice[J].Chin J Exp Tradit Med Formulae,2018,24(16):73-81.

[23] YU J S L,CUI W.Proliferation,survival and metabolism:the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination[J].Development,2016,143(17):3050-3060.

[24] LEE H J,VENKATARAME GOWDA SARALAMMA V,KIM S M,et al.Pectolinarigenin induced cell cycle arrest,autophagy,and apoptosis in gastric cancer cell via PI3K/AKT/mTOR signaling pathway[J].Nutrients,2018,10(8):1043.

[25] 胡馨月.PI3K/AKT/mTOR信号通路对帕金森病模型大鼠黑质氧化应激的影响[D].唐山:华北理工大学,2017.HU X Y.The effects of PI3K/AKT/mTOR signaling pathways for oxidative stressignaling in Parkinson′s disease model black mass striatum of rats[D].Tangshan:North China University of Science and Technology,2017.

[26] 胡聃,滕龙,洪芳,等.复方地黄颗粒对阴虚动风证帕金森病大鼠纹状体细胞凋亡及PI3K/Akt信号通路的影响[J].临床和实验医学杂志,2019,18(3):240-245.HU D,TENG L,HONG F,et al.Effect of compound rehmannia granule on apoptosis of striatum cell and PI3K/Akt signal pathway in Parkinson′s disease rats with endogenous wind syndrome caused by YIN Deficiency[J].J Clin Exp Med,2019,18(3):240-245.

[27] 林瑶,杨莎莎,刘婷,等.肉苁蓉对帕金森病模型大鼠PI3K、Akt、Bcl-2、Bax蛋白表达的影响[J].江西中医药大学学报,2019,31(1):83-86.LIN Y,YANG S S,LIU T,et al.Effects of Herba Cistanche on the Protein Expression of PI3K,Akt,Bcl-2 and Bax in rats model of Parkinson′s disease[J].J Jiangxi Univ Tradit Chin Med,2019,31(1):83-86.

[28] 陈红利,梁会娟,李燕.黄连碱上调miR-146a-5p后通过PI3K/AKT通路减轻由MPP+诱导的帕金森病细胞模型损伤[J].中华神经医学杂志,2020,19(1):2-8.CHEN H L,LIANG H J,LI Y.Coptisine up-regulates miR-146a-Sp expression to attenuate injury of Parkinson &amp; #39;s disease cell models induced by 1-methyl-4-phenylpy ridinium via PI3K/AKT pathway[J].Chin J Neuromedicine,2020,19(1):2-8.

[29] JIANG D J,PENG Y.The protective effect of decoction of Rehmanniae via PI3K/Akt/mTOR pathway in MPP+-induced Parkinson′s disease model cells[J].J Recept Signal Transduct,2021,41(1):74-84.

[30] 李鹏,杜园园,文杰,等.枸杞多糖通过激活PI3K/Akt通路调节MPP+诱导的帕金森病模型细胞凋亡[J].中国药物与临床,2020,20(1):28-30.LI P,DU Y Y,WEN J,et al.Lycium barbarum polysaccharide regulates MPP+ induced apoptosis of Parkinson′s disease model cells by activating PI3K/Akt pathway[J].Chin Remedies Clin,2020,20(1):28-30.

[31] CUADRADO A,MANDA G,HASSAN A,et al.Transcription factor NRF2 as a therapeutic target for chronic diseases:a systems medicine approach[J].Pharmacol Rev,2018,70(2):348-383.

[32] FAO L,MOTA S I,REGO A C.Shaping the Nrf2-ARE-related pathways in Alzheimer′s and Parkinson′s diseases[J].Ageing Res Rev,2019,54:100942.

[33] YAMAZAKI H,TANJI K,WAKABAYASHI K,et al.Role of the Keap1/Nrf2 pathway in neurodegenerative diseases[J].Pathol Int,2015,65(5):210-219.

[34] AHUJA M,AMMAL KAIDERY N,YANG L C,et al.Distinct Nrf2 signaling mechanisms of fumaric acid esters and their role in neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced experimental Parkinson′s-like disease[J].J Neurosci,2016,36(23):6332-6351.

[35] ZHANG X L,YUAN Y H,SHAO Q H,et al.DJ-1 regulating PI3K-Nrf2 signaling plays a significant role in bibenzyl compound 20C-mediated neuroprotection against rotenone-induced oxidative insult[J].Toxicol Lett,2017,271:74-83.

[36] GUO C,ZHU J R,WANG J W,et al.Neuroprotective effects of protocatechuic aldehyde through PLK2/p-GSK3β/Nrf2 signaling pathway in both in vivo and in vitro models of Parkinson′s disease[J].Aging,2019,11(21):9424-9441.

[37] 张辉,马惠清,王晓娟.银杏叶提取物通过激活Nrf2-ARE信号通路对帕金森病大鼠发挥脑保护作用[J].沈阳药科大学学报,2018,35(8):675-679,695.ZHANG H,MA H Q,WANG X J.The protective effect of ginkgo biloba extract on the brain of Parkinson′s disease rats through the activation of the Nrf2-ARE pathway[J].J Shenyang Pharm Univ,2018,35(8):675-679,695.

[38] HUANG J Y,YUAN Y H,YAN J Q,et al.20C,a bibenzyl compound isolated from Gastrodia elata,protects PC12 cells against rotenone-induced apoptosis via activation of the Nrf2/ARE/HO-1 signaling pathway[J].Acta Pharmacol Sin,2016,37(6):731-740.

[39] 赵燕芬,吴伟斌,梁结斐,等.基于Nrf2/HO-1通路探讨石参有效成分对鱼藤酮诱导的帕金森病细胞模型的保护作用[J].实用医学杂志,2020,36(13):1745-1749.ZHAO Y F,WU W B,LIANG J F,et al.Neuroprotection of Uraria crinite in Parkinson′s disease cell models based on the Nrf2/HO-1 pathway[J].J Pract Med,2020,36(13):1745-1749.

[40] 孙平鸽,李坤彬,李娜,等.基于Nrf2-Notch1信号轴探讨黄芩苷对帕金森病大鼠黑质多巴胺能神经元氧化应激的影响[J].浙江中医药大学学报,2021,45(8):876-882.SUN P G,LI K B,LI N,et al.Effect of baicalin on the oxidative stress of dopaminergic neurons in substantia nigra of rats with Parkinson′s disease based on Nrf2-Notch1 signal axis[J].J Zhejiang Chin Med Univ,2021,45(8):876-882.

[41] 孙冰,徐玉英.氧化苦参碱对帕金森小鼠中枢神经系统氧化应激的影响[J].新乡医学院学报,2020,37(6):509-516.SUN B,XU Y Y.Effects of oxymatrine on oxidative stress of central nervous system in Parkinson mice[J].J Xinxiang Med Univ,2020,37(6):509-516.

[42] NIEHRS C.The complex world of WNT receptor signalling[J].Nat Rev Mol Cell Biol,2012,13(12):767-779.

[43] PHUKAN S,BABU V S,KANNOJI A,et al.GSK3beta:role in therapeutic landscape and development of modulators[J].Br J Pharmacol,2010,160(1):1-19.

[44] 尹帅领,王海波,杨硕.肉苁蓉多糖通过激活Wnt/β-catenin信号通路对6-HODA致帕金森病大鼠的神经保护作用[J].中西医结合心脑血管病杂志,2020,18(8):1227-1230.YIN S L,WANG H B,YANG S.Neuroprotective effects of Cistanche deserticola polysaccharide on Parkinson′s rats induced by 6-HODA caused by activating the Wnt/β-catenin signaling pathway[J].Chin J Integr Med Cardio Cerebrovasc Dis,2020,18(8):1227-1230.

[45] CAO W H,DONG Y,ZHAO W N,et al.Mulberrin attenuates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson′s disease by promoting Wnt/β-catenin signaling pathway[J].J Chem Neuroanat,2019,98:63-70.

[46] WANG Y L,JU B,ZHANG Y Z,et al.Protective effect of curcumin against oxidative stress-induced injury in rats with Parkinson′s disease through the Wnt/β-catenin signaling pathway[J].Cell Physiol Biochem,2017,43(6):2226-2241.

[47] 肖绍坚,王志汕,陈诗雅,等.复方苁蓉精水提液对帕金森病模型大鼠中脑GSK-3β表达的影响[J].环球中医药,2020,13(11):1825-1829.XIAO S J,WANG Z S,CHEN S Y,et al.Effect of Cistanchedeserticola extract on expression of GSK-3β in midbrain of rats with Parkinson′s disease[J].Glob Tradit Chin Med,2020,13(11):1825-1829.

[48] 滕龙,洪芳,何建成,等.复方地黄方调控GSK3β信号转导通路缓解帕金森病异动症模型大鼠的机制研究[J].中华中医药学刊,2018,36(4):815-818.TENG L,HONG F,HE J C,et al.Study on mechanism of compound formula Rehmannia on remission of rats model of levodopa-induced dyskinesia by regulation of Gsk3β signal transduction pathway[J].Chin Arch Tradit Chin Med,2018,36(4):815-818.

[49]刘晶,杨元元,李喜情,等.从神经炎症发病机制探讨中医药治疗帕金森病的思路[J]亚太传统医药,2019,15(4):92-94.LIU J,YANG Y Y,LI X Q,et al.Discussion on the thinking and method of treating Parkinson's disease with traditional Chinese medicine from the pathogenesis of neuritis[J]. Asia Pac Tradit Med,2019,15(4):92-94.