参考文献
[1] Reshmy A K, Paulraj D. Data mining of unstructured big data in cloud computing[J]. International Journal of Business Intelligence and Data Mining, 2017, 13(3/4): 147.
[2] 李军. 消防安全评估研究综述[J]. 安全, 2020, 41(6): 7-14 (Li Jun. Summary of Research on Fire Safety Assessment of Building[J]. Safety and Security, 2020, 41(6): 7-14 (in Chinese))
[3] 黄俊斌, 张国维, 闫肃, 等. 基于物联网技术的建筑火灾风险动态评估[J]. 消防科学与技术, 2020, 39(10): 1371-1375 (Huang Junbin, Zhang Guowei, Yan Su, et al. Dynamic assessment of building fire risk based on Internet of Things technology[J]. Fire Science and Technology, 2020, 39(10): 1371-1375 (in Chinese))
[4] 冯凌杰, 陈晓勇, 马栋梁. 基于改进层次分析法的城中村火灾风险评估及防控对策研究[J]. 安全, 2019, 40(6): 19-23 (Feng Lingjie, Chen Xiaoyong, Ma Dongliang. Risk Assessment and Prevention and Control Countermeasures of Urban Village Fire based on Improved Analytic Hierarchy Process[J]. Safety and Security,2019, 40(6): 19-23 (in Chinese))
[5] SRIJIT B, Singh S, SUNITA B. Fuzzy TOPSIS based holistic assessment of regions: context of India[J]. Smart and Sustainable Built Environment, 2018, 7(2): 166-181.
[6] Muhammad K, Ahmad J, Mehmood I, et al. Convolutional neural networks based fire detection in surveillance videos[J]. IEEE Access, 2018: 18174-18183.
[7] 李明超, 刘承照, 张野, 等. 耦合颜色和纹理特征的矿物图像数据深度学习模型与智能识别方法[J]. 大地构造与成矿学, 2020, 44(2): 203-211 (Li Mingchao, Liu Chengzhao, Zhang Ye, et al. A deep learning and intelligent recognition method of image data for rock mineral and its implementation[J]. Geotectonica et Metallogenia, 2020, 44(2): 203-211 (in Chinese))
[8] 李巨虎, 范睿先 陈志泊. 基于颜色和纹理特征的森林火灾图像识别[J]. 华南理工大学学报(自然科学版), 2020, 48(1): 70-83 (Li Juhu, Fan Ruixian, Chen Zhibo. Forest fire recognition based on color and texture features[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(1): 70-83 (in Chinese))
[9] Tao C, Jian Z, Pan W. Smoke detection based on deep convolutional neural networks[C]// 2016 International Conference on Industrial Informatics Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII). IEEE, 2016.
[10] Filonenko A, Kurnianggoro L, Jo K, Comparative study of modern convolutional neural networks for smoke detection on image data[C]// International Conference on Human System Interactions. IEEE, 2017.
[11] Namozov A, Cho Y. An efficient deep learning algorithm for fire and smoke detection with limited data[J]. Advances in Electrical and Computer Engineering, 2018(18): 121-128.
[12] Mao W, Wang W, Dou Z, et al. Fire recognition based on multi-channel convolutional neural network[J]. Fire Technology, 2018, 54(2): 531-554.
[13] Li P, Zhao W. Image fire detection algorithms based on convolutional neural networks[J]. Case Studies in Thermal Engineering, 2020, 19: 100625.
[14] Wang Z, Zhang T, Huang X. Predicting real-time fire heat release rate based on flame images and deep learning[J]. Proceedings of the Combustion Institute, 2022.
[15] Zhang T, Wang Z, Zeng Y, et al. Building artificial-intelligence digital fire (AID-Fire) system: A real-scale demonstration[J]. Journal of Building Engineering, 2022, 62: 105363.
[16] Wang Z, Zhang T, Wu X, Huang X. Predicting transient building fire based on external smoke images and deep learning[J]. Journal of Building Engineering. 2022, 47: 103823.
[17] Zhou Y, Hu Z, Yan K, Lin J. Deep learning-based instance segmentation for indoor fire load recognition[J], IEEE Access. 2021, 9: 148771-148782.
[18] 田玉敏. 建筑火灾风险评价体系的建立与应用探讨[J]. 中国安全科学学报, 2008, 18(8): 74-79 (Tian Yumin. Establishment of building fire risk assessment index system and its application[J]. China Safety Science Journal, 2008, 18(8): 74-79 (in Chinese))
[19] 龙腾腾, 殷继艳, 欧朝蓉, 等. 云南省森林火灾风险综合评价及空间格局研究[J]. 中国安全科学学报, 2021, 31(9): 167-173 (Long Tengteng, Yin Jiyan, Ou Zhaorong, et al. Comprehensive assessment and spatial pattern study on forest fire risk in Yunnan Province[J]. China Safety Science Journal, 2021, 31(9): 167-173 (in Chinese))
[20] 杨学强, 李文俊, 岳勇. 综合评价指标权重确定方法[J]. 装甲兵工程学院学报, 2015(1): 101-105 (Yang Xueqiong, Li Wenjun, Yue Yong. A method for ascertaining comprehensive evaluation index weight[J]. Journal of Academy of Armored Force Engineering, 2015(1): 101-105 (in Chinese))
[21] 郑成雷. 放疗流程质控评价的研究[D]. 济南: 山东大学控制科学与工程学院, 2020 (Zheng Chenglei. Research on evaluation of quality control of radiotherapy process[D]. Jinan: Shandong University. School of Control Science and Engineering, 2020:1-5 (in Chinese))
[22] 吴佳, 陈森朋, 陈修云, 等. 基于强化学习的模型选择和超参数优化[J]. 电子科技大学学报, 2020,49(2):255-261 (Wu Jia, Chen Senpeng, Chen Xiuyun, et al. Reinforcement learning for model selection and hyperparameter optimization[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(2): 255-261 (in Chinese))
[23] 何超, 李萌, 李婷婷, 等. 多目标综合评价中四种确定权重方法的比较与分析[J].湖北大学学报(自然科学版), 2016, 38(2): 172-178. (He Chao, Li Meng, Li Tingting, et al. Comparison and analysis of the four methods of determining weights in multi-objective comprehensive evaluation[J], Journal of Hubei University(Natural Science Edition). 2016, 49(2): 255-261 (in Chinese))
[24] 王晓形. 基于AHP及专家打分法的大跨度隧道风险评估[J].现代隧道技术, 2020, 57(S1): 233-240. (Wang Xiaoxing. Risk assessment of large span tunnels based on AHP and expert scoring method[J]. Modern Tunnelling Technology, 2020, 57(S1): 233-240 (in Chinese))
[25] Zhou Y, Hu Z, Yan K , Lin J. Deep learning-based instance segmentation for indoor fire load recognition[J], IEEE. 2021, 9: 148771-148782.
参考文献
[1] 付生华.数字广播的发展及应用探讨[J].西部广播电视,2020(6):208-209.
[2] 陈利民.调频广播无线电互调信号对民航地空通信干扰的排查及分析[J].广播电视信息,2021,28(7):86-88.
[3] 谢琼.调频广播覆盖区收测方法分析[J].西部广播电视,2020,41(23):229-231.
[4] 林志义.便携式无线广播信号覆盖监测系统的实现研究[D].合肥:安徽大学,2019.
[5] 赵艳.论影响中波传输效果的几点因素[J].数字传媒研究,2021,38(7):74-76.
[6] 郝勇.中波广播的信道噪音问题与对策分析[J].信息记录材料,2020,21(7):231-232.
[7] 林玲,王奕.中波广播干扰调频广播信号问题与对策[J].电子技术,2021,50(5):104-105.
[8] 王维硒.短波广播覆盖特性分析软件设计及应用[J].中国无线电,2021(4):61-63.
[9] 黄贤彬.基于STM32的六路广播调谐器的设计与实现[J].视听,2018(4):17-19.
[10] 续芳.同台中波广播干扰调频广播信号问题的处理[J].电子制作,2021(10):96-98.
[11] 张丽.短波存储接收机的设计与实现[D].大连:大连海事大学,2019.
[12] 孙进,潘健,黄越.基于窄带物联网的校园智能铃声广播系统[J].数码世界,2020(3):254.
[13] 李国武.中波广播存在的问题分析与发展思考[J].数字通信世界,2020(12):235-236.
[14] 柯小燕,向渝,王善和,等.调频广播授时信号的接收技术研究[J].时间频率学报,2018,41(4):340-346.
[15] 刘天康,韩仿仿,王豪.短波国际广播及监测[J].中国无线电,2019(8):47-49.
[16] 钟志贤,刘珺,包爱民,等.基于STC单片机的电池电压监测报警器[J].电子设计工程,2021,29(15):40-44.