参考文献
[1] 姚檀栋, 邬光剑, 徐柏青, 等. “亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1203-1209. [Yao Tandong, Wu Guangjian, Xu Baiqing, et al. Asia Water Tower change and its impacts[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1203-1209. ]
[2] 朱颖彦, 杨志全, 廖丽萍, 等. 中巴喀喇昆仑公路冰川地貌地质灾害[J]. 灾害学, 2014, 29(3): 81-90. [Zhu Yingyan, Yang Zhiquan, Liao Liping, et al. Glacialized geomorphologcial geohazard along China-Pakistan International Karakoram Highway[J]. Journal of Catastrophology, 2014, 29(3): 81-90. ]
[3] 朱颖彦, 杨志全, Steve Z, 等. 中巴喀喇昆仑公路冰川灾害[J]. 公路交通科技, 2014, 31(11): 51-59. [Zhu Yingyan, Yang Zhiquan, Steve Z, et al. Glacier geo-hazards along China-Pakistan International Karakoram Highway[J]. Journal of Highway and Transportation Research and Development, 2014, 31(11): 51-59. ]
[4] 中国科学院兰州冰川冻土研究所. 喀喇昆仑山巴托拉冰川考察与研究[M]. 北京: 科学出版社, 1980. [Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences. Professional Papers on the Batura Glacier, Karakoram Mountains[M]. Beijing: Science Press, 1980. ]
[5] 施雅风, 张祥松. 喀喇昆仑山巴托拉冰川的近代进退历史变化[J]. 地理学报, 1978, 33(1): 27-40. [Shi Yafeng, Zhang Xiangsong. Historical variations in the advance and retreat of the Batura Glacier in the Karakoram Mountains[J]. Acta Geographica Sinica, 1978, 33(1): 27-40. ]
[6] 廖丽萍, 朱颖彦, 杨志全, 等. 中国—巴基斯坦喀喇昆仑公路Ghulkin冰川百年进退变化[J]. 冰川冻土, 2013, 35(6): 1391-1399. [Liao Liping, Zhu Yingyan, Yang Zhiquan, et al. Advance and retreat fluctuation of the Ghulkin Glacier along the Karakoram Highway over hundred years[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1391-1399. ]
[7] 张祥松, 陈建明, 蔡祥兴, 等. 国际喀喇昆仑公路沿线巴托拉冰川变化预测的验证[J]. 冰川冻土, 1996, 18(2): 97-103. [Zhang Xiangsong, Chen Jianming, Cai Xiangxing, et al. Verification on the prediction of the Batura Glacier along the International Karakoram Highway[J]. Journal of Glaciology and Geocryology, 1996, 18(2): 97-103. ]
[8] 张祥松. 喀喇昆仑公路沿线冰川的近期进退变化[J]. 地理学报, 1980, 35(2): 149-160. [Zhang Xiangsong. Recent variations in the glacial termini along the Karakoram Highway[J]. Acta Geographica Sinica, 1980, 35(2): 149-160. ]
[9] Farinotti D, Immerzeel W W, Kok R J, et al. Manifestations and mechanisms of the Karakoram glacier Anomaly[J]. Nature Geoscience, 2020, 13(1): 8-16.
[10] 朱颖彦, 李超月, 杨志全, 等. 中巴喀喇昆仑公路冰湖溃决灾害[J]. 山地学报, 2021, 39(4): 524-538. [Zhu Yingyan, Li Chaoyue, Yang Zhiquan, et al. Glacier Lake Outburst Flood (GLOF) along China-Pakistan International Karakoram Highway[J]. Mountain Research, 2021, 39(4): 524-538. ]
[11] 朱颖彦, 潘军宇, 李朝月, 等. 中巴喀喇昆仑公路冰川泥石流[J]. 山地学报, 2022, 40(1): 71-83. [Zhu Yingyan, Pan Junyu, Li Chaoyue, et al. Glacier debris flow along China-Pakistan International Karakoram Highway (KKH)[J]. Mountain Research, 2022, 40(1): 71-83. ]
[12] Shangguan D H, Bolch T, Ding Y J, et al. Mass changes of Southern and Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during 1975 and 2007 derived from remote sensing data[J]. The Cryosphere, 2015, 9(2): 703-717.
[13] Nuimura T, Sakai A, Taniguchi K, et al. The GAMDAM glacier inventory: a quality controlled inventory of Asian glaciers[J]. The Cryosphere, 2015, 8(3): 849-864.
[14] Brun F, Berthier E, Wagnon P, et al. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016[J]. Nature Geoscience, 2017, 10(9): 668-674.
[15] Gardner A S, Scambos T, Moholdt G, et al. ITS_LIVE regional glacier and ice sheet surface velocities[DB/OL]. National Snow and Ice Data Center, 2019, doi: 10.5067/6II6VW8LLWJ7.
[16] 黄丹妮, 张震, 张莎莎, 等. 东帕米尔高原冰川运动特征分析[J]. 干旱区地理, 2021, 44(1): 131-140. [Huang Danni, Zhang Zhen, Zhang Shasha, et al. Characteristics of glacier movement in the eastern Pamir Plateau[J]. Arid Land Geography, 2021, 44(1): 131-140. ]
[17] Dehecq A, Gourmelen N, Gardner A S, et al. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia[J]. Nature Geoscience, 2019, 12(1): 22-27.
[18] Sakai A. Brief communication: Updated GAMDAM glacier inventory over high-mountain Asia[J]. The Cryosphere, 2019, 13(7): 2043-2049.
[19] Molg N, Bolch T, Rastner P, et al. A consistent glacier inventory for Karakoram and Pamir derived from Landsat data: distribution of debris cover and mapping challenges[J]. Earth System Science Data, 2018, 10(4): 1807-1827.
[20] Bolch T, Pieczonka T, Mukherjee K, et al. Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s[J]. The Cryosphere, 2017, 11: 531-539.
[21] 刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16. [Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al. The contemporary glaciers in China based on the second Chinese glacier inventory[J]. Acta Geographica Sinica, 2015, 70(1): 3-16. ]
[22] Mason K. The glaciers of the Karakoram and neighborhood[J]. Records of the Geological Survey of India, 1930, 63: 214-278.
[23] 张祥松, 陈建明, 王文颖, 等. 喀喇昆仑山巴托拉冰川的新近变化[J]. 冰川冻土, 1996, 18(S1): 33-45. [Zhang Xiangsong, Chen Jianming, Wang Wenying, et al. Recent variations of the Batura Glacier in the Karakoram Mountains[J]. Journal of Glaciology and Geocryology, 1996, 18(S1): 33-45. ]
[24] Bhambri R, Hewitt K, Kawishwar P, et al. Surge-type and surge-modified glaciers in the Karakoram[J]. Scientific Reports, 2017, 7: 15391.
[25] Hewitt K. The Karakoram Anomaly? Glacier expansion and the 'Elevation Effect', Karakoram Himalaya[J]. Mountain Research and Development, 2005, 25(4): 332-340.
[26] Li Y J, Ding Y J, Shangguan D H, et al. Climate-driven acceleration of glacier mass loss on global and regional scales during 1961–2016[J]. Science China Earth Sciences, 2021, 51(3): 453-464.
[27] 王宁练, 张祥松. 近百年来山地冰川波动与气候变化[J]. 冰川冻土, 1992, 14(3): 241-250. [Wang Ninglian, Zhang Xiangsong. Mountain glacier fluctuations and climatic change during the last 100 years[J]. Journal of Glaciology and Geocryology, 1992, 14(3): 241-250. ]
[28] 巫建逢, 张寅生, 高海峰, 等. 印度河上游流域冰川度日因子变化及其影响因素[J]. 干旱区研究, 2020, 37(1): 264-274. [Wu Jianfeng, Zhang Yinsheng, Gao Haifeng, et al. Variation of degree-day factors and its affecting factors in the Upper Indus Basin[J]. Arid Zone Research, 2020, 37(1): 264-274. ]
[29] 于志翔, 于晓晶, 杨帆. 近40 a中巴经济走廊气候变化时空分布特征[J]. 干旱区研究, 2021, 38(3): 695-703. [Yu Zhixiang, Yu Xiaojing, Yang Fan. Spatio-temporal characteristics of climate change in China-Pakistan Economic Corridor from 1980 to 2019[J]. Arid Zone Research, 2021, 38(3): 695-703. ]
[30] Shangguan D H, Liu S Y, Ding Y J, et al. Characterizing the May 2015 Karayaylak Glacier surge in the eastern Pamir Plateau using remote sensing[J]. Journal of Glaciology, 2016, 62(235): 944-953.
[31] Wendt Y, Mayer C, Lambrecht A, et al. A glacier surge of Bivachny Glacier, Pamir Mountains, observed by a time series of high-resolution Digital Elevation Models and glacier velocities[J]. Remote Sensing, 2017, 9(4): 388.
[32] 李念杰, 蔡祥兴, 李椷. 喀喇昆仑山巴托拉冰川水文某些特征的探讨[J]. 冰川冻土, 1981, 3(2): 41-44. [Li Nianjie, Cai Xiangxing, Li Jian. Discussion on some hydrological features of the Batura Glacier, Karakoram[J]. Journal of Glaciology and Geocryology, 1981, 3(2): 41-44. ]
[33] Farhan S B, Zhang Y S, Aziz A, et al. Assessing the impacts of climate change on the high altitude snow- and glacier-fed hydrological regimes of Astore and Hunza, the sub-catchments of Upper Indus Basin[J]. Journal of Water and Climate Change, 2020, 11(2): 479-490.
[34]黄兆欢,彭思佳,褚洪义,等.基于时序偏移星跟踪技术的喀喇昆仑山EBatura和Passu剎川表面流速监测[J.兰州大学学报(自然科学版)2021,575)569-576.Huang Ziaotuan.Pean SjaChul Hongy i et al.Suface velocty montoring of the Batura and Passu glaciers in the Karator m Mountais based on ime seies fist racking fecimologylJ Jual f Lanchou University(Natural Sciences Edition),2021,57(5):569-576.]
参考文献
[1] 邹帅.BIM数字化交付平台在工程可行性研究阶段的应用[J].土木建筑工程信息技术,2021,13(4):74-79.
[2] 国家市场监督管理总局中国国家标准化管理委员会.基础地理信息要素数据字典第1部分:1∶5 001∶10 001∶2 000比例尺:GB/T 20258.1—2019[S].北京:中国标准出版社,2019.
[3] 肖亮亮,王长海.综合交通地理信息要素结构设计[J].西部交通科技,2021(5):154-157.
[4] 中华人民共和国资源部.地下管线要素数据字典:GB/T 41455—2022[S].北京:中国标准出版社,2022.
[5]张绍阳,高航,关胜超,等.交通信息基础数据元层次结构模型及其应用[J].长安大学学报(自然科学版),2013,33(6).79-84.
参考文献
[1] 桂慧清.无损检测技术在公路工程中的应用及趋势[J].交通世界,2021(36):82-83.DOI:10.16248/j.cnki.11-3723/u.2021.36.026.
[2] 韩娟.材料试验检测技术在公路工程中的运用分析[J].甘肃科技纵横,2020,49(11):67-69+72.
[3] 刘强.公路工程试验检测技术及应用分析[J].工程技术研究,2020,5(04):52-55+59.DOI:10.19537/j.cnki.2096-2789.2020.04.023.
[4] 贺拴海,王安华,朱钊,赵煜.公路桥梁智能检测技术研究进展[J].中国公路学报,2021,34(12):12-24.DOI:10.19721/j.cnki.1001-7372.2021.12.002.
[5] 王茂宁.基于分布式光纤传感的高速公路车辆检测与轨迹预测关键技术研究[D].四川大学,2021.DOI:10.27342/d.cnki.gscdu.2021.000774.
[6]丁冰,杨祖莨,丁洁,刘晋峰,闫国亮.基于改进YOLOv3的高速公路隧道内停车检测方法[J.计算机工程与应用,2021,57(23):234-239.