白翠媚,梅 昀,张 苗
(华中农业大学土地管理学院,武汉 430070)
摘要:采用武汉市1996-2010年的土地利用变更数据、能源数据以及相关经济数据,通过构建碳排放、碳足迹模型,测算近15年来武汉市土地利用的碳排放量和碳足迹,并分析其碳排放量、碳足迹的变化及影响因素。结果表明,武汉市建设用地碳排放量占碳排放总量的98%以上,在1996-2010年处于逐年增加的状态,2010年已达到1996年的1.4倍;武汉市的总碳足迹和人均碳足迹也在逐年增加,碳赤字较为严重。碳排放总量的不断增加主要是由武汉市建设用地不断扩大以及经济增长方式和能源结构不合理造成。为此,武汉市不仅要控制建设用地的扩张,同时还应改变经济增长方式、调整能源消费结构。
教育期刊网 http://www.jyqkw.com
关键词 :碳排放;碳足迹;建设用地;能源结构;武汉市
中图分类号:F301.24 文献标识码:A 文章编号:0439-8114(2015)02-0313-05
DOI:10.14088/j.cnki.issn0439-8114.2015.02.015
气候变暖是全世界公认的环境问题,造成气候变暖的原因主要是温室气体排放量的大幅增加。2005年2月16日《京都议定书》正式生效,给CO2排放量居世界第二位的中国带来了严峻和现实的压力与挑战[1],掀起学术界有关碳排放研究的热潮。有学者对经济增长与碳排放的关系进行了研究。彭佳雯等[2]利用脱钩模型探讨了中国经济增长与能源碳排放的脱钩关系及程度;杜婷婷等[3]则以库茨涅兹环境曲线及衍生曲线为依据,对中国CO2排放量与人均收入增长时序资料进行统计拟合得出中国经济发展与CO2排放的函数关系。也有学者对土地利用类型转变引起的碳排放效应变化进行了研究。如苏雅丽等[4]对陕西省土地利用变化的碳排放效益进行了研究。对于土地利用碳排放影响因素的研究也有了一定的成果,主要是利用指数分解法对影响土地利用碳排放效应的因素进行分解分析,如蒋金荷[5]运用对数平均Divisia指数法(LMDI法)定量分析了中国1995-2007年碳排放的影响因素及贡献率。对于碳足迹的研究,赵荣钦等[6]计算和分析了江苏省不同土地利用方式能源消费碳排放与碳足迹。还有其他学者通过碳足迹计算模型,从碳足迹核算和碳足迹评价的角度进行了有意的探讨[7-9]。研究不同土地利用方式的碳排放效应,有助于从土地利用调控的角度控制碳排放。本研究以武汉市为例,分析武汉市土地利用碳排放和碳足迹,探讨武汉市碳排放变化的影响因素,为武汉市调控土地利用以减少碳排放提供科学依据,对武汉市构建“两型社会”具有重要的理论与现实意义。
1 研究区域概况
武汉市位于中国的中部地区、江汉平原的东部,地处东经113°41′-115°05′,北纬29°58′-31°22′。地形以平原为主,拥有丰富的自然资源。截至2010年,全市土地面积为8 494.41 km2,农用地面积为4 270.45 km2,其中耕地面积为3 174.05 km2,林地面积为975.81 km2, 建设用地1 596.51 km2,未利用地面积2 627.45 km2。本年全市国民生产总值达到6 762.20亿元,同比增长12.5%,位居15个副省级城市第五位。第一、第二、第三产业分别为198.70亿、3 254.02亿、3 303.48亿元,比重为2.94%、48.12%、48.94%。人均GDP为68 286.24元,城镇居民人均可支配收入23 738.09元,农村居民人均纯收入9 813.59元。全市全年社会消费品零售总额达2 959.04亿元。
2 研究方法与数据来源
2.1 碳排放测算模型
根据李颖等[10]、苏雅丽等[4]的研究,本研究基于各种用地类型的碳排放/碳吸收系数计算碳排放量,主要涉及耕地、林地、草地、建设用地。其中建设用地具有碳源效应,耕地上的农作物虽然能够吸收二氧化碳,但是在很短的时间内又会被分解释放到空气中,因此将耕地视为碳源[11],林地和草地为碳汇。
碳排放测算公式[10]:
CL=∑Si·Qi (1)
其中,CL为碳排放总量;Si为第i种土地利用类型的面积;Qi为第i种土地利用类型的碳排放(吸收)系数,吸收为负,其中耕地、林地、草地的碳排放系数分别为0.422、-0.644、-0.02 tC/hm2[12]。
建设用地的碳排放主要通过计算其建设过程消耗能源所产生的碳排放间接得到。这里的能源主要是指煤炭、石油和天然气。
建设用地碳排放估算公式[10]:
CP=∑ni=∑Mi·Qi (2)
其中,CP为碳排放量;ni为第i种能源的碳排放量;Mi为第i种能源消耗标准煤;Qi为第i种能源的碳排放系数,其中煤、石油、天然气的碳排放系数分别为0.747 6 tC/t标准煤、0.582 5 tC/t标准煤、0.443 4 tC/t标准煤[12]。
2.2 不同土地利用类型的碳足迹
碳足迹是指吸收碳排放所需的生产性土地(植被)面积,即碳排放的生态足迹[13]。净生态系统生产力即NEP是指1 hm2植被一年的碳吸收量,用来反映植被的固碳能力[13],采用NEP指标反映不同植被的碳吸收量,并以此计算出消纳碳排放所需的生产性土地的面积(碳足迹)。森林和草原是主要的陆地生态系统,因此本文主要考察这两种植被类型的碳吸收[13]。根据赵荣钦等[6]、谢鸿宇等[13]的方法,首先计算出化石能源碳排放量,再根据森林和草地的碳吸收量计算出各自的碳吸收比例,最后由各自的NEP计算出吸收化石能源消耗碳排放所需的森林和草地的面积。化石能源碳足迹计算公式为:
其中,A为总的化石能源碳足迹,Ai为第i类能源的碳足迹,Ci为第i种能源的消耗量(万吨标准煤),Qi为第i种能源的碳排放系数,Perf与Perf分别为森林与草原吸收碳的比例;NEPerf与NEPerf分别为森林和草地的净积累量。吸收1 t的CO2所需的相应生产用地土地面积计算结果见表1。
2.3 数据来源
能源数据与经济数据来源于《武汉市统计年鉴(1996-2010)》,武汉市土地利用结构数据来源于武汉国土资源和规划局。
3 结果与分析
3.1 武汉市碳排放量
根据公式(1)、(2)和《武汉市统计年鉴》所查询的武汉市能源消耗量,以及武汉市历年土地变更数据,计算武汉市1996-2010年的碳排放量见表2。
从不同土地利用类型的碳排放量来看(表2),建设用地的碳排放量占碳排放总量的98%以上, 由此可以说明建设用地为主要的碳源。同时可以看到,武汉市的建设用地碳排放量增加较快, 1996到2010年间,武汉市建设用地碳排放量增加了1 091.6万t,增幅为88.58%,碳排放总量也增加了87.21%。通过SPSS 19对建设用地面积与碳排放总量进行双侧检验,结果表明,在0.01水平下显著相关,可见武汉市的碳排放总量与建设用地的碳排放量走势保持同步。
在建设用地面积增加的同时,耕地面积在不断减少,但是耕地面积的减少对碳排放总量并没有起到明显的影响,原因可能有两个方面,一是耕地的碳排放量相对于建设用地来讲数量太小,最高也只占碳源排放总量的1.6%;二是耕地转变为建设用地不仅没有降低碳排放量,反而会增加碳排放量。
另一方面,武汉市的碳吸收总量也在不断增加,1996到2010年间增加了2.09万t,增幅为49.76%,其中占碳汇吸收比例较小的草地碳吸收量在逐年下降,但是林地的碳吸收量占总吸收量的90%以上,甚至有些年份达到了99%以上,且林地面积在不断扩大,林地的固碳量在增加,从而使得武汉市碳吸收量15年间不断增加。
3.2 武汉市建设用地碳足迹分析
由公式(3)计算武汉市1996-2010年的能源消耗碳足迹间接得到建设用地碳足迹,如表3所示。由表3中可以看出,武汉市的建设用地碳足迹逐年增加,在此期间,虽然武汉市的林地与草地的总面积有所增加,但是远远不足总碳足迹的增加速度,同时人均碳足迹由0.63 hm2增加为0.74 hm2,由此表明武汉市的生态系统不足以弥补能源消费的碳足迹。不同能源的碳足迹表明,煤炭的消费是引起总碳足迹增加的主要原因。表3也表明,森林的碳吸收能力比草地要强,碳足迹以森林为主。
3.3 影响因素分析
3.3.1 土地利用结构 不同的土地利用结构对碳排放量与碳吸收量都会产生影响。1996-2010年武汉市土地利用结构变化见表4。由表4可以看出,武汉市的林地面积不断增加,草地面积在减少,但是由于林地是主要的碳汇,因此武汉市的碳汇量随林地面积的增加而增加。耕地面积在减少,建设用地面积不断增加,且增加速度较快,一部分面积的增加是由于耕地的非农化,即耕地转为了建设用地,而建设用地是主要碳源,因此,武汉市的碳排放量随建设用地面积增加而增加。
3.3.2 经济增长方式 现有的研究表明[10],国家工业化,能源消费碳排放是最主要的排放类型,可占二氧化碳排放的90%以上。从上述武汉市碳排放量测算结果来看,能源碳排放占碳排放总量的98%以上。由此,应分析经济发展中能源消费带来的碳排放变化。
碳排放强度是碳排放量与国内生产总值(GDP)的比值,是衡量温室气体排放的指标,可以作为发展中国家承认和反映其对减缓气候变化的贡献指标[14]。计算可知,1996-2010年武汉市碳排放强度总体上呈下降趋势,由1996年的1.88 t/万元下降到2010年的0.53 t/万元,下降了71.81%,年平均下降4.79%。根据何建坤等[14]的研究,要实现二氧化碳的绝对减排,碳排放强度的下降率要大于GDP的增长率。而武汉市1996-2010年碳排放强度下降率远小于14.54%的GDP增长率,这远远不能实现碳减排。
经济增长既需要资本的投入,也需要土地、能源等物资投入,若经济增长使得土地、能源等物资消耗加剧,碳排放量加大,则资源利用效率降低,对环境的不利影响加剧,显然这种经济增长方式不可取。为评判经济增长对碳排放变化的影响,可选用能源碳排放系数,即能源碳排放增长速度与国内生产总值的比值来反映经济增长对碳排放的影响,其与能源消费弹性系数具有同样的测量意义[15]。已有研究表明,发展中国家能源消费弹性系数一般都大于或接近于1,而发达国家则小于或接近0.5[15]。其值越大,说明能源碳排放增长快于经济增长速度。计算发现,武汉市能源碳排放系数达到了0.76,远远大于0.5。由此说明,武汉市的经济增长促进了碳排放量的增加。
3.3.3 能源结构 不同的能源其碳排放系数不同,三大能源中,煤炭的碳排放系数最大,天然气最小,石油居中。因此,煤炭的消耗量越大,则能源碳排放量越大。根据公式(2)可测算各种能源碳排放量,并得出三大能源碳排放量趋势图(见图1)。由于各能源的碳排放量与能源消费量之间呈正比,因此,能源碳排放量的趋势与能源消费量的趋势一致。由图1可知,石油和天然气的消费量在1996-2010年间较为平稳,煤炭的消费量在1996-2002年间保持稳定,2002-2006年快速上升,2006-2009出现微小下降,2010年又开始上升,与武汉市碳源排放总量变化走势一致,煤炭消耗量占总能源的67%以上。可以看出,武汉市是以煤炭为主的能源结构。
平均碳排放系数是指能源碳排放总量与能源消耗总量的比值,其变化能够反映能源结构变动对碳排放量的影响。当低碳能源比例的增加时,平均碳排放系数将会变小。从图1来看,武汉市1996-2010年的平均碳排放系数较为平稳,在0.707~0.717之间浮动。以上分析表明,武汉市能源消费结构不合理。
3.3.4 碳足迹影响因素分析 武汉市能源消耗总量在15年间由1 790.13万t增长到了3 352.96万t,与此同时,其碳足迹也由328.13万hm2增长到了618.78万hm2。能源消耗总量与碳足迹走势图(图2)表明,碳足迹随着能源消耗总量的变动而变动,两者呈现出高度一致的走势。
采用回归分析可以定量分析能源消耗总量与碳足迹的关系。本文以95%的置信度通过有关检验,其相关性如表5所示,能源消耗量与碳足迹的相关系数达到了0.999 5,说明碳足迹受能源消耗总量影响较大。
4 小结与讨论
1)建设用地是主要的碳源,其碳排放量占总碳排放总量的98%以上。建设用地面积的增加是武汉碳排放量增加的一个重要原因。发展低碳经济,建设“两型社会”,武汉需控制建设用地面积的不断扩大。同时,提高土地利用集约度,通过集约利用缓解建设用地供求矛盾,实现低碳集约利用。
2)武汉市的总碳足迹和人均碳足迹在不断增加,虽然武汉市的林地与草地的总面积有所增加,但是远远不足总碳足迹的增加速度,表明武汉市碳赤字较为严重。其中,森林碳足迹和煤炭碳足迹为碳足迹的主要“碳汇”和“碳源”,煤炭的消耗是引起总碳足迹增加的主要原因。因此,增强生产性土地,特别是森林的固碳能力,改善能源消费结构,减少煤炭消费量,提高石油、天然气等能源的消费比例,可以较好地降低碳排放水平。
3)1996-2010年,武汉市碳排放量总体上升。主要原因除了建设用地面积不断增加外,还受经济增长方式与能源结构的影响。较高的能源碳排放系数反映出武汉市目前的经济增长方式不利于低碳经济的发展。建立低碳的能源体系,调整产业结构和能源消费结构,是发展低碳经济社会的关键。
4)通过土地利用变化以及能源消费量的变化分析了武汉市的碳排放以及碳足迹的变化,但是在计算能源消费碳排放时,因数据的限制,仅考虑了化石能源消费所带来的碳排放,未计算农村生物质能燃烧带来的碳排放。同时,由于目前对碳足迹的概念和计算边界缺乏统一的定义,计算数据获取难度较大,碳足迹的研究需要进一步深入探讨与完善。
教育期刊网 http://www.jyqkw.com
参考文献:
[1] 庄贵阳.低碳经济:中国之选[J].中国石油石化,2007,7(13):32-34.
[2] 彭佳雯,黄贤金,钟太洋,等.中国经济增长与能源碳排放的脱钩研究[J].资源科学,2011,33(4):626-633.
[3] 杜婷婷,毛 锋,罗 锐.中国经济增长与CO2排放演化探析[J].中国人口资源与环境,2007,17(2):94-99.
[4] 苏雅丽,张艳芳.陕西省土地利用变化的碳排放效益研究[J].水土保持学报,2011,25(1):152-156.
[5] 蒋金荷.中国碳排放量测算及影响因素分析[J].资源科学, 2011,33(4):597-604.
[6] 赵荣钦,黄贤金.基于能源消费的江苏省土地利用碳排放与碳足迹[J].地理研究,2010,29(9):1639-1649.
[7] SOVACOOL B K, BROWN M A. Twelve metropolitan carbon footprints: A preliminary comparative global assessment[J]. Energy Policy, 2010, 38(9):4856-4869.
[8] KENNY T, GRAY N F. Comparative performance of six carbon footprint models for use in Ireland[J]. Environmental Impact Assessment Review, 2009, 29(1):1-61.
[9] 黄贤金,葛 杨,叶堂林,等.循环经济学[M].南京:东南大学出版社,2009.
[10] 李 颖,黄贤金,甄 峰.江苏省区域不同土地利用方式的碳排放效应分析[J].农业工程学报,2008,24(S2):102-107.
[11] 肖红艳,袁兴中,李 波,等.土地利用变化碳排放效应研究—以重庆市为例[J].重庆师范大学学报(自然科学版),2012,29(1):38-43.
[12] 2006 IPCC Guidelines for National Greenhouse Gas Inventories [R]. Geneva:IPCC,2006.
[13] 谢鸿宇,陈贤生,林凯荣,等.基于碳循环的化石能源及电力生态足迹[J].生态学报,2008,28(4):1729-1735.
[14] 何建坤,刘 滨.作为温室气体排放量衡量指标的碳排放强度分析[J].清华大学学报(自然科学版),2004,44(6):740-743.
[15] FANG J Y, CHEN A P, PENG C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292:2320-2322.
[16] 蓝家程,傅瓦利,袁 波,等.重庆市不同土地利用碳排放及碳足迹分析[J].水土保持学报,2010,26(1):146-155.
(责任编辑 彭西甜)