论文网
首页 理科毕业机械制造毕业正文

关于3D打印技术中的几个问题与思考(连载2)

  • 投稿小明
  • 更新时间2015-09-14
  • 阅读量723次
  • 评分4
  • 51
  • 0

刘斌

(华南理工大学,广东广州,510640)

(接上期)

2 3 D 打印技术的优点及缺点是什么?

2.1 3D打印技术的优点

(1)节省材料。不用剔除边角料,提高了材料的利用率,通过摒弃生产线而降低了成本;

(2)能做到较高的精度和很高的复杂程度,可以制造出采用传统方法制造不出来的、非常复杂的制件;

(3)不需要传统的刀具、夹具、机床或任何模具,就能直接把计算机的任何形状的三维CAD图形生成实物产品;

(4)它可以自动、快速、直接和比较精确地将计算机中的三维设计转化为实物模型,甚至直接制造零件或模具,从而有效地缩短了产品研发周期;

(5)3D打印无需集中的、固定的制造车间,具有分布式生产的特点;

(6)3D打印能在数小时内成形,它让设计人员和开发人员实现了从平面图到实体的飞跃;

(7)它能打印出组装好的产品,因此,它大大降低了组装成本,甚至可以挑战大规模生产方式。

2.2 3D打印技术的缺点

(1)存在成本高、工时长的软肋

3D打印仍是比较昂贵的技术。由于用于增材制造的材料研发难度大、而使用量不大等原因,导致3D打印制造成本较高,而制造效率不高。

目前,3D打印技术在我国主要应用于新产品研发,且制造成本高,制造效率低,制造精度尚不能令人满意。3D打印目前并不能取代传统制造业。在未来制造业发展中,“减材制造法仍是主流”。

(2)在规模化生产方面尚不具备优势

3D打印技术既然具有分布式生产的优点,那么相反,在规模化生产方面就不具备优势。目前,3D打印技术尚不具备取代传统制造业的条件,在大批量、规模化制造等方面,高效、低成本的传统减材制造法更胜一筹。

现在看来,想用3D打印作为生产方式来取代大规模生产不太可能。且不说3D打印技术目前尚且不具备直接生产像汽车这样复杂的混合材料产品,即使该技术在未来取得长足进步,完全打印一辆车只怕要耗时好几个月,在成本上远远高于大规模生产汽车时均摊到每辆汽车上的成本。

所以,对于生产有大量刚性需求的产品来说,具有规模经济优势的大规模生产仍比重点放在“个性化、定制化”的3D打印生产方式更加经济。

(3)打印材料受到限制

3D打印技术的局限和瓶颈主要体现在材料上。目前,打印材料主要是塑料、树脂、石膏、陶瓷、砂和金属等,能用于3D打印的材料非常有限。

尽管已经开发了许多应用于3D打印的同质和异质材料,但是开发新材料的需求仍然存在,一些新的材料正在研发中。这种需求包含两个层面,一是不仅需要对已经得到应用的材料—工艺—结构—特性关系进行深入研究,以明确其优点和限制;二是需要开发新的测试工艺和方法,以扩展可用材料的范围。

(4)精度和质量问题

由于3D打印技术固有的成型原理及发展还不完善,其打印成型零件的精度(包括尺寸精度、形状精度和表面粗糙度)、物理性能(如强度、刚度、耐疲劳性等)及化学性能等大多不能满足工程实际的使用要求,不能作为功能性零件,只能做原型件使用,从而其应用将大打折扣。

而且,由于3D打印采用“分层制造,层层叠加”的增材制造工艺,层与层之间的结合再紧密,也无法和传统模具整体浇铸而成的零件相媲美,而零件材料的微观组织和结构决定了零件的使用性能。

3 为什么3 D 打印技术只有到上世纪80年代末才开始出现商品化的设备?

3D打印技术的核心思想最早起源于美国。早在1892年,J.E.Blanther在其专利中曾建议用分层制造法构成三维地形图。1902年,Carlo Baese的专利提出了用光敏聚合物制造塑料件的原理。1904年,Perera提出了在硬纸板上切割轮廓线,然后将这些硬纸板粘结成三维地形图的方法(如图12所示)。20世纪50年代之后,出现了上百个有关3D打印的专利。

现代3D打印技术的出现,起源于二十世纪八十年代中后期。此后,3D打印技术有了根本性的发展,出现了更多的专利。如:1986年Hull发明了立体光固化成型(SLA,Stereo Lithography Appearance),1988年Feygin发明了分层物体制造,1989年Deckard发明了粉末材料选择性激光烧结技术( S L S ,Selective Laser Sintering),1992年Crump发明了熔融沉积成型技术(FDM,Fused DepositionModeling),1993年Sachs在麻省理工大学发明了3D打印技术等。

随着各类3D打印专利技术的不断发明,其相应的生产设备也被相继研发而出。如:1988年,美国的3D Systems公司根据Hull的专利,生产出了世界上第一台现代3D打印设备——SLA-250(立体光固化成型机),开创了3D打印技术发展的新纪元。在此后的多年中,3D打印技术蓬勃发展,涌现出了十余种新工艺及相应的3D打印设备。

那么,为什么3D打印技术只有到上世纪80年代末才开始出现商品化的设备呢?本文作者认为,主要原因有两点:

(1)与三维CAD软件有关。由于3D打印技术采用分层制造的原理,因此,被制造零件的各层截面数据的来源是非常重要的。只有三维CAD软件的成熟,才能轻松、方便、快捷、随意地获取被制造零件的任意截面的数据。因此,只有到了上世纪80年代末,成熟的三维CAD软件为3D打印技术提供了数据保障。

(2)与相关材料有关。由于3D打印技术采用“分层制造,层层叠加”的制造原理,因此,3D打印材料的性能需满足“制造每一层时的材料结合效果、层与层之间的材料结合效果”较好的要求,并与其打印成型工艺相适应。

4 为什么说材料是3D打印技术的核心?

3D打印技术是一种跨学科的交叉技术,打印材料是该技术的核心。一种材料的出现,直接决定了其三维打印的成型工艺、设备结构、成型件的性能等。从1988年的立体光固化成型(SLA)技术的出现到当今的三维打印成型,都是由于某一种新材料的出现而引起的,如:液态光敏树脂决定了SLA工艺与设备,薄层材料决定了LOM工艺与设备,丝状材料决定了FDM工艺与设备等。由于材料在物理形态、化学性能等方面存在差别,才形成了今天3D打印材料的多品种和3D打印的不同成型方法。

3D打印技术在这几十年的发展中,新材料是3D打印技术的重要推动力。全世界从事3D打印技术的公司和大学等都在积极地研发用途更为广泛、打印成型更为简便的新材料。

4.1 3D打印材料分类

(1)按材料的化学性能分类

目前,3D打印涉及的成型材料主要有四大类:

1)高分子材料,如液态光敏树脂材料、塑料(ABS、尼龙、PLA等)丝料或粉料或片材等;

2)无机材料,如石蜡、石膏粉末、陶瓷粉末、砂等;

3)金属材料,如合金金属粉末、金属薄板料等;

4)生物医学材料、复合材料等。

(2)按材料的物理状态及形状分类

目前,3D打印涉及的成型材料主要有四大类:

1)液态材料:如光敏树脂等;

2)固态粉末材料:非金属粉,如蜡粉,塑料粉,覆膜陶瓷粉等;金属粉,如不锈钢粉,钛金属粉等;

3)固态薄片材料:如纸、塑料、金属等;

4)固态丝状材料,如蜡丝、ABS丝料、PLA丝料等。

图13所示为几种常用的3D打印材料。

4.2 3D打印材料的基本性能

(1)3D打印对材料性能的一般要求

1)有利于快速、精确地打印成型原型零件;

2)打印成型的制件应当接近最终性能要求;

3)应尽量满足对强度、刚度、耐潮湿性、热稳定性能等要求;

4)应该有利于后续处理工艺。

(2)不同应用目标对材料性能的要求

3D打印成型件的四个应用目标是:概念型零件、测试型零件、模具型零件和功能型零件。应用目标不同,对成型材料的要求也不同。

1)概念型零件。对材料成型精度和物理化学特性要求不高,主要要求成型速度快。

2)测试型零件。对于成型后的强度、刚度、耐温性、抗蚀性能等有一定要求,以满足测试要求。如果用于装配测试,则要求成型件有一定的精度要求。

3)模具型零件。要求材料适应具体模具制造要求,如强度、硬度等。

4)功能型零件。要求材料具有一定的力学和化学性能,使打印成型件具有一定的服役特性,从而满足正常的工程使用要求。

5 为什么说3D打印不能用于批量化生产?

3D打印技术对传统制造技术的替代作用不强。虽然在部分产品的小批量生产和模具生产上颇有优势,但在大批量生产(如图14所示)上,3D打印的速度和成本都比不过传统制造方式。

另外,3D打印材料品种的单一和昂贵的成本,使其局限于对价格敏感度不高的产品,市场应用领域有限。

当然,不可否认3D打印技术的魅力:不需要复杂的工艺,不需要庞大的机床,不需要众多的人力,能直接从计算机的三维图形数据生成实物零件,使生产制造得以向更广的人群延伸。因此,可以乐观地预测,“只要有合适的材料,3D打印机将来不是要取代某一个制造业,而是要取代所有的制造业。”

但是,相比于传统制造工艺,3D打印效率还是很低,成本依然很高。并且,打印效率与打印质量也呈现负相关关系。如果需要非常高的打印精度,打印速度就会变慢,效率则会很低。基于这样的打印特征,3D打印只能用于单件、个性化产品的生产,不能用于大批量(如图14所示)产品的生产。如果是工业企业的大规模化生产,一定是选择性价比最高的模具化生产。

对于3D打印,争议比较多的是,它是否会引起生产模式的变化?譬如,一件复杂产品的设计变成了计算机的三维数据模型,工艺由打印机完成,普通大众不用学习传统的复杂制造工艺,只需要操作计算机就可以生产出实物产品,这样,大工厂的流水线生产模式可能又回归到原始的家庭作坊。对此,有专家指出,3D打印可以生产的产品实际上还是受限制的,达不到大规模生产的地步,后者仍需要通过传统的集中生产来进行。但是,对一些使用比较少的部件或零件,3D打印应该是一个比较好的方式。因此,3D打印所起到的作用,更多的是个性化生产(如图15所示),而不是大规模制造。千万不要有3D打印的出现,就有否定传统制造工艺的想法。对于大规模制造而言,铸造、锻造、模具成型都不可替代。成本上竞争不过,质量上、稳定性上更不用说。所以在现阶段,3D打印是在某些特定情况下使用,不能用于批量化生产。

6 为什么说3D打印不能替代传统的制造工艺

通常,制造业特别是金属制造业采用的是减法工艺,即通过车、铣、刨、磨、钻等金属切削工艺对被加工件进行减材制造(如图16所示),而3D打印则采用的是加法工艺,即通过不断地进行材料的有序堆积,最终加工出成品,因此,3D打印也被称为增材制造。而3D打印与传统加工工艺的差别也就体现在这“增减”上。

3D打印的特有优势也体现在这加法工艺上。譬如说,几乎可以百分之百地利用原材料,制造出传统工艺无法实现的特殊结构的产品,因而节省开模费用,在小批量生产上具有成本优势,在新产品研发过程中可以快速制造原型件或样品,可以实现分布式制造等。的确,3D打印技术的这些优异特点无疑是传统制造工艺难以实现的。如果一台3D打印机具备这些特点,无疑将会对传统的制造工艺带来强劲的冲击,甚至颠覆性的变化。

但是,迄今为止,人们常常规避3D打印在规模制造中的经济性这一关键指标。譬如说,制作飞机舷窗样件,3D打印的成本是传统开模成本的十分之一,同时省去很长的开模时间。但是,飞机高昂的研发成本是靠批量摊薄的,这个数字应该远远不止十架,传统加工方式的优势就显现出来。再譬如,饮誉二战的远洋货轮“自由轮”,战时共制造了2751艘,随着工艺和管理水平的提升,“自由轮”的建造时间从最初的244天,缩短到平均42天,最快记录是4天15小时30分钟,这是大规模工业化制造的经典之作。

同时,我们还应该注意的是,3D打印设备与工艺的紧耦合现象,即3D打印设备很难做成通用设备。这在塑料熔融沉积成型工艺中比较突出,要根据不同的打印原料更换相应的打印头,甚至是打印机。这种非通用的特点,削弱了3D打印的分布式制造色彩,毕竟,并不是所有3D打印的支持者都有经济实力来购置多台3D打印设备的。如果3D打印不能在足够多的制造领域替代传统的制造工艺,那么,就要慎言3D打印技术将颠覆整个传统制造业了。

事实上,既然3D打印无法完全替代传统制造工艺,那么,从产业高度看,传统制造技术和3D打印技术就应该是互补技术,只不过在不同的制造领域或者不同的产品制造上,两者在产品制造过程中工艺占比不同罢了。

7 为什么说3D打印技术不能替代传统的制造产业?

在传统制造业领域,开模是一件非常令人头疼的事情,耗时长、难度大、成本高。而3D打印技术的优势恰恰体现在产品设计(模型设计)方面。凡是能够设计出来的任何复杂的个性化产品,都能够通过3D打印技术把模型样件打印出来,甚至直接生产制造出产品。

3D打印技术虽然能够打印出我们所需要的多种产品,但是从成本核算、材料约束、生产效率、工艺水平、产品性能等多方面因素综合比较来看,3D打印并不能够替代传统的生产方式。

3D打印的核心意义体现在两个方面:

一是传统生产方式不能生产制造的个性化、复杂、高难度产品,通过3D打印技术都能够直接制造;二是虽然传统方式能够生产制造,但是投入成本太高,周期太长,通过3D打印技术可以实现快捷、方便、缩短周期、降低成本的目的。

3D打印能够解决传统技术所不能解决的技术难题,对传统制造业的转型升级和结构性调整将起到积极的作用(如图17所示)。

但是,传统制造业所擅长的批量化、规模化、精益化生产,恰恰是3D打印技术的短腿。同时,3D打印技术在原材料、精密度、工艺稳定性等诸多方面还面临着瓶颈。因此,3D打印技术将替代传统制造业并不现实,一是成本并不划算,达不到规模化的要求;二是3D打印也不可能使工厂彻底告别车床、钻头、冲压机、制模机等传统工具。3D打印技术作为传统生产方式的一次重大变革,是传统生产方式有益的补充。

宣扬“3D打印技术将完全取代传统制造业”这种观点是一种严重的误导,既不科学,也不符合实际,是不可能做到的。关键原因在于,我们生产生活中所需要的任何商品都具有功能性,而任何功能性的商品都是由不同的材料制造而成的。我们生产生活中需要很多种类的商品,但是,我们每一个家庭不可能都成为工厂,去采购许多种材料。如果我们需要的任何东西都靠自己打印制造,首先是成本将大大超过商场中购买的同类商品;其次,传统制造业经过数千年的发展,在生产工艺等方面都比3D打印技术更为成熟。

(未完待续)